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Abstract: Topological indices describe mathematical invariants of molecules in mathematical
chemistry. M-polynomials of chemical graph theory have freedom about the nature of molecular
graphs and they play a role as another topological invariant. Social networks can be both cyclic and
acyclic in nature. We develop a novel application of M-polynomials, the (m, n, r)-agent recruitment
graph where n > 1, to study the relationship between the Dunbar graphs of social networks and the
small-world phenomenon. We show that the small-world effects are only possible if everyone uses
the full range of their network when selecting steps in the small-world chain. Topological indices
may provide valuable insights into the structure and dynamics of social network graphs because they
incorporate an important element of the dynamical transitivity of such graphs.

Keywords: Dunbar’s number; Dunbar graphs; topological indices; social networks; small-world
effects; degrees of separation; (m, n, r)-agent recruitment graph

1. Introduction

Social networks have become a topic of major interest in recent years. Many studies have focused
on the size and structure of ego-centric networks (the world as seen from the individual’s perspective)
rather than taking a top-down overview of the global network as a while. This has resulted in two
important findings. First, that the size of an individual’s network is typically about 150 people in size,
and, second, that these networks have a very distinct layered structure whose layers have a specific
fractal relationship [1,2] that is strongly suggestive of the possibility that they grow naturally as a
result of the accretion of nodes over time [3]. These layers, with the same numerical sizes of 5, 15, 50,
and 150 individuals, have been found in many different contexts, both offline and online. Among these
have been the size and structure of personal social networks [3,4], hunter-gatherer communities [2],
facebook and twitter graphs [5–7], email networks [8], co-authorship networks in the sciences [5],
the organization of modern armies [3], alliances in online gaming environments [9], calling patterns in
cellphone databases [1], and trader networks on stock exchanges [10]. These distinct graphs have been
termed Dunbar graphs.

The constraints on both network size and structure are due in part to cognitive limits on the
number of people who can be known as individuals (known as the “Social brain hypothesis” [11,12])
and in part on the constraint that time imposes on the capacity to interact. Wilson et al. [13] concluded
from the social interaction graph of Facebook that time is one of the constraints for human interactions.
These constraints also reflect individuals’ willingness to do favours for each other: alters who lie in
each other’s innermost (five and 15) layers are much more likely to offer help, and agree to do favours
for each other, than people who lie in each others’ outermost (50 and 150) layers.
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An alternative, and perhaps better known, approach to social networks has been that developed
by Milgram [14] in the 1960s which adopts a small-world perspective and focuses on what has
become known as the “six degrees of separation”. According to Barabási [15], the Hungarian writer
Frigyes Karinthy wrote a short story entitled “Láncszemek" ( in English “Chains”). In this story,
Karinthy introduced for the first time the concept of six degrees of separation. Later, social psychologist
Stanley Milgram [14] reinvented the same concept as Karinthy through a now-famous experiment.
According to Milgram [14], the small-world problem was generated from the following question: given
any two people, X and Z, how many intermediate acquaintance links are needed before X and Z are
connected. Often six degrees of separation is also known as the small-world phenomenon.

In [14], Milgram found that, on average, five intermediates sufficed to link any two randomly
chosen individuals, no matter where they lived in the United States. Later, Travers and Milgram [16]
arbitrarily selected individuals (N = 296) in Nebraska who were asked to generate acquaintance chains
to a target person in Boston, Massachusetts, employing “the small world method" of Milgram [14].
Sixty-four chains reached the target person in Boston. In this experiment, the mean number of
intermediaries between starters and targets was found to be 5.2. Thus, the phenomenon is known as
“the six degrees of separation”.

Subsequently, in 2003, Dodds et al. [17] conducted a global social-search with more than
60,000 email users. In this experiment, they considered 18 target persons in 13 countries. They found
that social searches reached the targets in five to seven steps. Similarly, Aylward et al. [18] reported
that the average degrees of separation between two individuals in the networks of mentee–mentor
relationships in pediatric psychology was 5.30.

However, after the evolution of online social networking sites, Backstrom et al. [19] reported
that the average number of intermediates across the 721 million people using the Facebook site in
2011 was 3.74. Five years later, a group of researchers at “Facebook Research" [20] reported that the
average separation was 3.57. In 2014, when there were 1.6 billion users of Facebook, Daraghmi and
Yuan [21] found 3.9 as the average number of acquaintances separating any two people in Facebook’s
social networks no matter who they are. In the case of twitter, Bakhshandh et al. [22] found 3.43 as an
average degree of separation between any two random Twitter users.

One possible explanation for the difference in these two estimates of the small-world constant is
that the evolution of online social networking sites has helped to reduce the number of links needed
because computational algorithms can search more efficiently than humans can for minimum paths.
Thus, the six degrees of separation observed by Milgram [14] and others in offline networks may
reflect the cognitive limits that prevent humans searching through all possible paths. This is likely
to be because humans will usually only be aware of the people in their immediate, personal social
network. Although they will assume that each of those people in turn has a network they can reach
out to at each successive step, the initiator does not have any knowledge of those networks, and may
make poor choices.

Given these two very different ways of looking at social networks, an obvious question is how the
small-world constants map onto Dunbar graphs. Do people search the whole of their personal social
network when deciding how to start off a Milgram’s small-world chain? Or do they search preferentially
among the innermost layers of best friends who are more likely to agree to any request for such a favour?

In considering this question, a further issue to bear in mind is that the limits on Dunbar graph
social networks are only population averages. There is considerable variation around these values at
the individual level within populations. Kalish and Robins [23], for example, found an effect of both
neuroticism and extraversion on the quality of an individual’s social network: extraverts are more
energetic, outgoing, and sociable than introverts. Similarly, Roberts et al. [24] showed that extraversion
is correlated with the size of the support clique (the 5-layer), though not the size of sympathy group
(the 15-layer). Other studies have reported similar results: the social world consists of two phenotypes:
those who have small social circles and those who are more like social butterflies and have much
larger networks [25]. Age has similar effects: younger adults tend to have larger networks (150–250),
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whereas older adults have smaller networks (100-150) [6]. This suggests that it may be important to
take personality into account when analysing the size and structure of social networks.

In order to evaluate and compare networks, we need a methodology that reflects the dynamics
of networks rather better than the more conventional static network indices (such as path length
or degree). Chemical graph theory, developed to index invariants for molecular graphs, provides a
promising new approach since it was designed to capture the natural way in which molecular networks
evolve. Moreover, these invariants are simulation friendly. Since, social networks are dynamic in
nature and are mostly studied by experiments, we are motivated to use chemical graph theory to
predict theoretical invariants for social networks.

Chemical graph theory (CGT) is a branch of chemistry [26] which deals with graph theory from
the perspective of chemical phenomena. Topological indices are one of the subtopics of chemical
graph theory [27] that may offer a particularly relevant approach to understanding patterns of network
growth. CGT was initiated by Wiener [28] in 1947. Wiener [28] predicted the theoretical relation
between boiling points of paraffins and structural changes of positions of an atom by a linear equation
and experimentally verified his predictions. Since then, several theories have been developed in
chemical graph theory and they are used to predict quantitative structure–property relationship
(QSPR) and quantitative structure–activity relationship (QSAR) of molecules. Recently, chemical graph
theory has been finding crucial roles in research related to drug discovery [29], simulation of various
new molecular structures [30], etc. A topological index can be defined as a real valued function
f : G → R+, which maps every molecular structure G to a non-negative real number [18].

In 1975, Randić [31] proposed his “branching index”. It is a topological index R ( R−1 and R−1
2

) and
used to measure branching of the carbon-atom skeleton of saturated hydrocarbons. Later, Ballobás and
Erdȯs [32] generalized this index as “General Randić index”. General Randić index [32] is given by
Rα(G) = ∑

uv∈E(G)
(dudv)α. If α = −1

2 , then it reduces to Randić index R−1
2
(G). First Zagreb index M1(G)

and second Zagreb index M2(G) were introduced by Balaban [33]. First Zagreb index is defined as
M1(G)= ∑

uv∈E(G)
(du + dv). If α = 1, then general Randić index reduces to second Zagreb index M2(G).

For α = −1, the general Randić index reduces to the second modified Zagreb index mM2(G).
Since then, a number of other indices have been introduced. The Inverse sum index

of a graph G is given by I(G) = ∑
uv∈E(G)

( dudv
du+dv

). Zhong [29] defined harmonic index of a

graph G as H(G) = ∑
uv∈E(G)

( 2
du+dv

). Augmented Zagreb index [30] of a graph G is defined as

AZI(G) = ∑
uv∈E(G)

( dudv
du+dv−2 )

3. Symmetric division index [30] is defined as SDD(G)= ∑
uv∈E(G)

{ min(du ,dv)
max(du ,dv)

+

max(du ,dv)
min(du ,dv)

}. Other indices include the Hosoya polynomial [34], clar covering polynomial [35],
matching polynomial [36], Schultz polynomial [37], Tutte polynomial [27], etc. In 2015, Deutsch and
Kalvžar [38] introduced M-polynomials. Since then, these have been attracting the attention of many
mathematical chemists [30,39] and many others. One may refer [40–51] for some extensive works
related to above directions.

2. Defining Network Structure as M-Polynomial

In this section, we develop our theoretical framework in two steps. In the first sub-section,
we provide an example of a Dunbar social network graph. The important feature of these graphs
is their layerd property. We can then define this class of graphs as an M-polynomial. In the second
sub-section, we show how the various CGT topological indices can be derived for graphs of this type.

2.1. The (m, n, r)-Agent Recruitment Graph

To provide a concrete example of a Dunbar graph, consider a manager, identified as 0,
of an incentive based chain-system marketing business who recruits four agents identified as 1,
2, 3 and 4 under him in his first layer. As per business’s criteria, agent 1 is asked to recruit another
three agents under him in second layer, identified as 5, 6 and 7. The same criterion is also applicable



Symmetry 2020, 12, 932 4 of 12

for agents 2, 3 and 4. All three agents in the first layer then later recruit another three agents under
each of them. Now, each agent of second layer recruits another three agents under him and thus yields
a (4, 3, 3)-agent recruitment graph. It provides a suitable description of how a personal social network
or a commercial network (such as a recruiting agent’s network in a marketing system) grows over time.
Its form represents the state of the network after it has evolved and reached a stable state. Figure 1
illustrates a graph of this type. It provides a suitable description of how a personal social network or a
commercial network ( such as a recruiting agents’ network in marketing system) grows over time.

Figure 1. A (4, 3, 3)-agent recruitment graph.

In this section, we define the set of equations that we will use in the following section to calculate
the topological indices for various social network graphs.

Now, consider a set of these Dunbar graphs linked through a common individual (or node)
at different layers to each other to create a small-world chain. To represent this, we introduce the
(m, n, r)-agent recruitment graph, where n > 1, to provide a formal description of this kind of
graph as an M-polynomial. This new kind of multi-network (or global network) graph has both
M-polynomial and topological indices based on layered structures and the number of agents in each
layer. We can therefore derive a set of topological invariants for social networks that relate Dunbar’s
Number (represented by the coefficients m and n) to the small-world degrees of separation concept
(represented by r).

Definition 1 ([38]). Let G = (V, E) be a graph and θij, i, j ≥ 1 be the number of edges e = uv of G such that
{du(G), dv(G)} = {i, j}. Then, M-polynomial of G is M(G, x, y) = ∑

i≤j
θij(G)xiyj.

Following Table 1 is due to [38].

Table 1. Table of topological index and derivation from M(G, x, y) or f (x, y).

Topological Index Notion for Topological Index Derivation from M(G, x, y) or f (x, y)

First Zagreb M1(G) (Dx + Dy)( f (x, y)) |x=y=1
Second Zagreb M2(G) (DxDy)( f (x, y)) |x=y=1

Second modified Zagreb m M2(G) SxSy( f (x, y)) |x=y=1
General Randić Rα(G) Dα

x Dα
y ( f (x, y)) |x=y=1

General Inverse Randić RRα(G) Sα
xSα

y( f (x, y)) |x=y=1
Symmetric Division Index SDD(G) (DxSy + DySx)( f (x, y)) |x=y=1

Harmonic Index H(G) 2Sx J( f (x, y)) |x=1
Inverse sum Index I(G) Sx JDxDy( f (x, y)) |x=1

Augmented Zagreb Index AZI(G) S3
xQ−2 JD3

xD3
y( f (x, y)) |x=1
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According to Deutsch and Kalvžar [38], Dx( f (x, y)) = x ∂ f (x,y)
∂x , Dy( f (x, y)) = y ∂ f (x,y)

∂y ,

Sx( f (x, y)) =
∫ x

o
f (t,y)

t dt, Sy( f (x, y)) =
∫ y

o
f (x,t)

t dt, Qα( f (x, y)) = xα f (x, y) and α 6= 0 and
J( f (x, y)) = f (x, x).

Definition 2. A graph is said to be (m, n, r)-agent recruitment graph, where n > 1, if it has a vertex of degree
m in 1st layer, then each of m vertices has degree n in 2st layer and so on up to (r− 1)th layer, but degree of
each vertex is 1 in rth layer.

Figure 1 illustrates a graph of this type. It provides a suitable description of how a personal social
network or a commercial network (such as a recruiting agent’s network in a marketing system) grows
over time.

If G be any graph, then V(G) and E(G) are vertex set and edge set of G respectively. If G indicates
(m, n, r)-agent recruitment graph, where n > 1, then |V(G)| = 1 + m(nr−1)

(n−1) and |E(G)| = m(nr−1)
(n−1) .

Now, we have the following Tables 2 and 3.

Table 2. Vertex-degree table for (m, n, r)-agent recruitment graph.

du 1 m (n + 1)

Number of vertices mnr−1 1 m(nr−1−1)
(n−1)

Table 3. Edge-degree table for (m, n, r)-agent recruitment graph.

(du, dv) (1, n + 1) (m, n + 1) (n + 1, n + 1)

Number of edges mnr−1 m mn(nr−2−1)
(n−1)

For the sake of easiness of calculations, we denote β = mnr−1, γ = m and δ = mn(nr−2−1)
(n−1) .

Let E1(G), E2(G) and E3(G) be the sets of edges uv ∈ E(G) whose incidence vertices have degrees
1 and n + 1; m and n + 1; n + 1 and n + 1, respectively.

Thus; θ1(n+1)(G) =| E1(G) |= β , θm(n+1)(G) =| E2(G) |= γ and θ(n+1)(n+1)(G) =| E3(G) |= δ.
Now, due to definition of M-polynomial, we have the following result.

M(G, x, y) = ∑
i≤j

θij(G)xiyj

= θ1(n+1)(G)xyn+1 + θm(n+1)(G)xmyn+1 + θ(n+1)(n+1)(G)xn+1yn+1

= βxyn+1 + γxmyn+1 + δxn+1yn+1.

Let, f (x, y) = M(G, x, y). Thus, we have the following results.

Dx( f (x, y)) = x
∂( f (x, y))

∂x
= βxyn+1 + mγxmyn+1 + (n + 1)δxn+1yn+1,

Dy( f (x, y)) = y
∂( f (x, y))

∂y

= β(n + 1)xyn+1 + (n + 1)γxmyn+1 + (n + 1)δxn+1yn+1,
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DxDy( f (x, y)) = β(n + 1)xyn+1 + γm(n + 1)xmyn+1 + δ(n + 1)2xn+1yn+1,

Sx( f (x, y)) =
∫ x

o

f (t, y)
t

dt

= βxyn+1 +
γ

m
xmyn+1 +

δ

(n + 1)
xn+1yn+1,

Sy( f (x, y)) =
∫ y

o

f (x, t)
t

dt

=
β

(n + 1)
xyn+1 +

γ

(n + 1)
xmyn+1 +

δ

(n + 1)
xn+1yn+1,

SxSy( f (x, y)) =
β

(n + 1)
xyn+1 +

γ

m(n + 1)
xmyn+1 +

δ

(n + 1)2 xn+1yn+1,

DxSy( f (x, y)) = β(n + 1)xyn+1 +
γ(n + 1)

m
xmyn+1 + δxn+1yn+1,

DySx( f (x, y)) =
β

(n + 1)
xyn+1 +

mγ

(n + 1)
xmyn+1 + δxn+1yn+1,

Sx J( f (x, y)) = β
xn+2

(n + 2)
+ γ

xm+n+1

(m + n + 1)
+ δ

x2(n+1)

2(n + 1)
,

Sx JDxDy( f (x, y)) =
β(n + 1)
(n + 2)

xn+2 +
γm(n + 1)
(m + n + 1)

xm+n+1 +
δ(n + 1)2

2(n + 1)
x2(n+1),

S3
xQ−2 JD3

xD3
y( f (x, y)) =

β(n + 1)3

n3 xn +
γm3(n + 1)3

(m + n− 1)3 xm+n−1 +
δ(n + 1)6

(2n)3 x2n,

Dα
x Dα

y( f (x, y)) = β(n + 1)αxyn+1 + γmα(n + 1)αxmyn+1 + δ(n + 1)2αxn+1yn+1,

Sα
xSα

y( f (x, y)) =
β

(n + 1)α
xyn+1 +

γ

mα(n + 1)α
xmyn+1 +

δ

(n + 1)2α
xn+1yn+1.

Now, we have the following two results.

(DxSy + DySx)( f (x, y)) = β(n + 1)xyn+1 +
γ(n + 1)

m
xmyn+1 + δxn+1yn+1 +

β

(n + 1)
xyn+1

+
mγ

(n + 1)
xmyn+1 + δxn+1yn+1,

(Dx + Dy)( f (x, y)) = βxyn+1 + mγxmyn+1 + (n + 1)δxn+1yn+1 + β(n + 1)xyn+1 + (n + 1)γxmyn+1

+ (n + 1)δxn+1yn+1.

2.2. Topological Indices From The M-polynomial

We can now derive topological indices equivalent to those given in Table 1 for the (m, n, r)-agent

recruitment graph, where n > 1. To do this, we set β = mnr−1, γ = m and δ = mn(nr−2−1)
(n−1) . We obtain

the following topological indices for a (m, n, r)-agent recruitment graph, where n > 1 .

Theorem 1. Let G be a (m, n, r)-agent recruitment graph. Then, M1(G)= mnr−1(n + 2) + m(m + n + 1) +
mn(nr−2−1)

(n−1) (2n + 2).

Proof. We have,
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(Dx + Dy)( f (x, y)) = βxyn+1 + mγxmyn+1 + (n + 1)δxn+1yn+1 + β(n + 1)xyn+1 + (n +

1)γxmyn+1 + (n + 1)δxn+1yn+1.

Hence, M1(G)= (Dx +Dy)( f (x, y)) |x=y=1 = mnr−1(n+2)+m(m+n+1)+ mn(nr−2−1)
(n−1) (2n+2).

Theorem 2. Let G be a (m, n, r)-agent recruitment graph. Then, M2(G)= mnr−1(n + 1) + m2(n + 1) +
mn(nr−2−1)

(n−1) (n + 1)2.

Proof. We have,

DxDy( f (x, y)) = β(n + 1)xyn+1 + γm(n + 1)xmyn+1 + δ(n + 1)2xn+1yn+1.

Hence, M2(G)= DxDy( f (x, y)) |x=y=1 = mnr−1(n + 1) + m2(n + 1) + mn(nr−2−1)
(n−1) (n + 1)2.

Theorem 3. Let G be a (m, n, r)-agent recruitment graph. Then, m M2(G) = mnr−1

(n+1) +
1

(n+1) +
mn(nr−2−1)

(n−1)
(n+1)2 .

Proof. We have,

SxSy( f (x, y)) = β
(n+1) xyn+1 + γ

m(n+1) xmyn+1 + δ
(n+1)2 xn+1yn+1.

Hence, m M2(G) = SxSy( f (x, y)) |x=y=1= mnr−1

(n+1) +
1

(n+1) +
mn(nr−2−1)

(n−1)
(n+1)2 .

Theorem 4. Let G be a (m, n, r)-agent recruitment graph. Then, Rα(G)= mnr−1(n + 1)α + m1+α(n + 1)α +
mn(nr−2−1)

(n−1) (n + 1)2α, here α ∈ N.

Proof. We have,

Dα
x Dα

y( f (x, y)) = β(n + 1)αxyn+1 + γmα(n + 1)αxmyn+1 + δ(n + 1)2αxn+1yn+1.

Hence, Rα(G)= Dα
x Dα

y( f (x, y)) |x=y=1 = mnr−1(n + 1)α + m1+α(n + 1)α + mn(nr−2−1)
(n−1) (n + 1)2α,

here α ∈ N.

Theorem 5. Let G be a (m, n, r)-agent recruitment graph. Then, RRα(G)= mnr−1

(n+1)α + m
mα(n+1)α +

mn(nr−2−1)
(n−1)

(n+1)2α .

Proof. We have,

Sα
xSα

y( f (x, y)) = β
(n+1)α xyn+1 + γ

mα(n+1)α xmyn+1 + δ
(n+1)2α xn+1yn+1.

Thus, RRα(G)= Sα
xSα

y( f (x, y)) |x=y=1 = mnr−1

(n+1)α + m
mα(n+1)α +

mn(nr−2−1)
(n−1)

(n+1)2α .

Theorem 6. Let G be a (m, n, r)-agent recruitment graph. Then, SDD(G) = mnr−1{ (n+1)2+1
n+1 }+ (n+1)2+m2

(n+1) +

2 mn(nr−2−1)
(n−1) .

Proof. We have,
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(DxSy + DySx)( f (x, y)) = β(n + 1)xyn+1 + γ(n+1)
m xmyn+1 + δxn+1yn+1 + β

(n+1) xyn+1 +
mγ

(n+1) xmyn+1 + δxn+1yn+1.

Thus, SDD(G) = (DxSy + DySx)( f (x, y)) |x=y=1 = mnr−1{ (n+1)2+1
n+1 } + { (n+1)2+m2

(n+1) } +

2 mn(nr−2−1)
(n−1) .

Theorem 7. Let G be a (m, n, r)-agent recruitment graph. Then, H(G) = 2mnr−1

(n+2) + 2m
m+n+1 +

mn(nr−2−1)
(n−1)
(n+1) .

Proof. We have,

Sx J( f (x, y)) = β xn+2

(n+2) + γ xm+n+1

(m+n+1) + δ x2(n+1)

2(n+1) .

Thus, H(G) = Sx J( f (x, y)) |x=1 = 2mnr−1

(n+2) + 2m
m+n+1 +

mn(nr−2−1)
(n−1)
(n+1) .

Theorem 8. Let G be a (m, n, r)-agent recruitment graph. Then, I(G) = mnr−1(n+1)
(n+2) + m2(n+1)

m+n+1 +

(n+1)mn(nr−2−1)
(n−1)

2 .

Proof. We have,

Sx JDxDy( f (x, y))= β(n+1)
(n+2) xn+2 + γm(n+1)

(m+n+1) xm+n+1 + δ(n+1)2

2(n+1) x2(n+1).

Thus, I(G) = Sx JDxDy( f (x, y)) |x=1 = mnr−1(n+1)
(n+2) + m2(n+1)

m+n+1 +
(n+1)mn(nr−2−1)

(n−1)
2 .

Theorem 9. Let G be a (m, n, r)-agent recruitment graph. Then, AZI(G) = mnr−1(n+1)3

n3 + m4(n+1)3

(m+n−1)3 +

(n+1)6 mn(nr−2−1)
(n−1)

(2n)3 .

Proof. We have,

S3
xQ−2 JD3

xD3
y( f (x, y)) = β(n+1)3

n3 xn + γm3(n+1)3

(m+n−1)3 xm+n−1 + δ(n+1)6

(2n)3 x2n.

Thus, AZI(G) = S3
xQ−2 JD3

xD3
y( f (x, y)) |x=1= mnr−1(n+1)3

n3 + m4(n+1)3

(m+n−1)3 +
(n+1)6 mn(nr−2−1)

(n−1)
(2n)3 .

3. Dunbar Graphs and Topological Indices

We can now determine the topological indices for a set of graphs that differ in their size and
structure in the way we suggested in the Introduction. We consider all possible combinations of
m and n values for Dunbar graph layers of 5, 15 and 150, and r = 4 for online social networks and
r= 6 for small-world degrees of separation. This is simply a matter of interpolating these values
into the equations for Theorems 1–9 in Table 4 in the form of nine topological indices given in
Table 1. We consider first the case of a small-world structure with r = 6 layers. Let, z = M(G, x, y).
Now, setting the values of m = 5, n = 5, r = 6, −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1 in M(G, x, y) we have the
following figure of an offline strong supportive Dunbar graph.

The graph in Figure 2 indicates monotonic increasing behaviour of this Dunbar graph with respect
to the x-axis and a quadratic relationship with respect to the y-axis.
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Figure 2. M-polynomial graph of an offline strong supportive Dunbar graph.

Table 4. Topological indices of different (m, n, r)-agent recruitment graphs.

(m, n, r) M1(G) M2(G) m M2(G) SDD(G) H(G) I(G) AZI(G)

(5,5,6) 156,230 234,300 2712.6667 96,364.333 5115.1948 5115.1948 13,406.494
(5,150,6) 5.848×1013 1.154×1014 2.515×109 5.734×1013 5.013×109 3.772×1011 3.873×1011

(5,5,4) 6230 9300 108.5 3864.3333 204.48052 549.35065 1265.1852
(5,150,4) 2.599×109 5.130×109 111759.94 2.548×109 222,789.54 16,764,004 17,215,344

(150,150,6) 1.754×1015 3.463×1015 7.544×1010 1.720×1015 1.504×1011 1.132×1013 1.162×1013

(150,150,4) 7.798×1010 1.539×1011 3352798 7.645×1010 6,683,685.2 5.029×108 5.816×108

(150,5,6) 470,8650 715,9500 81,375.167 2,894,381 153,430.49 402,651.1 839,940.33
(150,5,4) 208,650 409,500 3250.1667 11,9381 6109.0659 16,936.813 62,340.333
(5,15,6) 73,225,380 1.302×108 238,364.12 60,987,322 463,641.65 357,3548.5 4,608,373.2
(5,15,4) 325,380 577,600 1059.4375 271,072 2060.7703 15,901.401 20,853.232
(15,5,6) 468,840 703,800 8137.6667 289,106 15,344.286 40,242.857 82,594.256
(15,5,4) 18,840 28,800 325.16667 11,606 612.14286 1671.4286 4834.2557

(15,15,6) 2.197×108 3.905×108 715,092.25 1.830×108 1,390,924.5 10,720,704 13,832,502
(15,15,4) 976,290 1,735,200 3178.1875 813,194.12 6181.8501 47,763.188 69,942.194.
(15,150,6) 1.754×1014 3.463×1014 7.544×109 1.720×1014 1.504×1010 1.132×1012 1.162×1012.
(15,150,4) 7.798×109 1.539×1010 35,279.81 7.645×109 668,368.6 50,292,145 51,683,780

Rα(G) RRα(G)

15,625×6α + 5(1+α)×6α + 3900×62α 15625×6−α + 5(1−α)×6−α + 3900×6−2α

3.797×1011×151α + 5(1+α)×151α + 2.548×109 ×1512α 3.797×1011×151−α + 5(1−α)×151−α + 2.548×109 ×151−2α

625×6α + 5(1+α)×6α + 150×62α 625×6−α + 5(1−α)×6−α + 150×6−2α

16,875,000×151α + 5(1+α)×151α + 113,250×1512α 16,875,000×151−α + 5(1−α)×151−α + 113,250×151−2α

1.139×1013×151α + 150(1+α)×151α + 7.645×1010 ×1512α 1.139×1013×151−α + 150(1−α)×151−α + 7.645×1010 ×151−2α

5.062×108×151α + 150(1+α)×151α + 3,397,500 ×1512α 5.062×108×151−α + 150(1−α)×151−α + 3,397,500 ×151−2α

468,750×6α + 150(1+α)×6α + 117,000 ×62α 468,750×6−α + 150(1−α)×6−α + 117,000 ×6−2α

18,750×6α + 150(1+α)×6α + 4500 ×62α 18,750×6−α + 150(1−α)×6−α + 4500 ×6−2α

3796875×16α + 5(1+α)×16α + 271,200 ×162α 3,796,875×16−α + 5(1−α)×16−α + 271,200 ×16−2α

16,875×16α + 5(1+α)×16α + 1200 ×162α 16,875×16−α + 5(1−α)×16−α + 1200 ×16−2α

46,875×6α + 15(1+α)×6α + 11,700 ×62α 46,875×6−α + 15(1−α)×6−α + 11,700 ×6−2α

1875×6α + 15(1+α)×6α + 450 ×62α 1875×6−α + 15(1−α)×6−α + 450 ×6−2α

11,390,625×6α + 15(1+α)×16α + 813,600 ×162α 11,390,625×6−α + 15(1−α)×16−α + 813,600 ×16−2α

50,625×6α + 15(1+α)×16α + 3600 ×162α 50,625×6−α + 15(1−α)×16−α + 3600 ×16−2α

1.139×1012×151α + 15(1+α)×151α + 7.645×109×1512α 1.139×1012×151−α + 15(1−α)×151−α + 7.645×109×151−2α,
50,625,000×151α + 15(1+α)×151α + 339,750×1512α 50,625,000×151−α + 15(1−α)×151−α + 339,750×151−2α,

4. Discussion

We have shown that it is possible to describe the properties of networks using invariants from
chemical graph theory. These indices have the benefit that they allow us to capture the dynamic
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properties of how networks grow, and how information is likely to flow through a network. One of
the benefits of an approach based on M-polynomials is that it provides a basis for comparing networks
of different size and structure (this being one of the purposes for which these kinds of invariants were
originally developed by Randić [31]). For example, extraverts and introverts have networks of different
size (with correspondingly different dynamic properties), and M-polynomials provide us with a metric
for determining the consequences of these differences both for the personality types concerned and
also for their capacity to form integrated networks when their characteristics differ in the way they do.

Of course, social networks differ from chemical molecules in that they are based on patterns of
information flow (via social interactions) through a system rather than just electrochemical connections.
Nonetheless, the principle is the same, since information can only flow through the connections
provided by direct contacts. In that respect, M-polynomials provide us with a natural metric for
describing and comparing the structure and properties of social networks in a way that reflects their
growth properties. It may also allow us to determine how optimal these networks are, as well as
providing a metric for comparing the efficiency of different networks. Such analyses may, for example,
have implications for understanding the efficiency of business organizations since these are often
based on hierarchically structured networks of this kind [40].

Here, we considered networks with only a limited range of structures. The computed values
in Table 4 suggest that networks in which both m and n layers only target their inner core (five)
layers are unlikely to reach a wide enough range of alters to successfully meet Milgram’s small-world
criterion. So long as all layers at least target their respective 15-layers, a 6-chain path is likely to reach
a sufficiently large population to locate the target individual, though 4-chain paths are likely to be
challenged. However, both 4- and 6-chain paths are only likely to reach a wide enough population to
be sure of finding the target providing all layers exploit their full 150 social network. This confirms the
empirical findings of Killworth et al. [41] who used a small-world experimental design to show that
the number of people selected as the first step in the chain reached a peak somewhere in the region of
150–250.

5. Conclusions

An exploration of how the M-polynomials change as network size and structure increase allows us
to examine how these indices behave. This may allow us to determine which characteristics have most
impact on invariants, and so to consider whether it is possible to design networks for administrative
structures that are more functional in terms of the efficiency of information flow. This might also have
implications for the design of online networking software. We might, for example, ask whether the
availability of cheap price service facilities provides the possibility of creating stronger social networks
leading to greater social cohesion through shared subgraphs.
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