

Mechanochemical Synthesis of Polymorphic Urea · Adipic Acid Cocrystal as a Sustained-Release Nitrogen Source

Shalika Parakatawella,^[a] Diptajyoti Gogoi,^[b] Poonam Deka,^[b] Yizhi Xu,^[c] Chanaka Sandaruwan,^[d] Anil C. A. Jayasundera,^[a, e] Mihails Arhangelskis,^[c] Ranjit Thakuria,^{*[b]} and Nadeesh M. Adassooriya^{*[a, f]}

A 2:1 urea · adipic acid cocrystal was obtained in two polymorphic forms (Form I reported earlier, and Form II synthesized in this study) using mechanochemistry as well as solution crystallization. Lower solubility and leaching study showed the newly synthesized urea adipic acid 2:1 cocrystal to be an efficient sustained-release nitrogen fertilizer compared to commercially available urea.

Introduction

Fertilization and agriculture are closely related to each other. Fertilizers manage micro- as well as macro-nutrients required by crops. Nitrogen is a key nutrient source in biomass, food, and fiber production in plants, and urea is the most widely used plant nutrient as nitrogen source.^[11] Urea has the highest nitrogen content among all commercially available solid fertilizers; however, runoff and eutrophication are two major issues of urea due to its high solubility ($\approx 110-170$ g per 100 mL at 20–40 °C), volatilization, and moisture uptake properties.^[2] Approximately 50–70% of the urea used in soil is lost to the environment due to hydrolysis of urea during its use as fertilizer.^[3] Nickel-containing metalloenzyme urease, present

[a]	S. Parakatawella, Dr. A. C. A. Jayasundera, Dr. N. M. Adassooriya Postgraduate Institute of Science
	University of Peradeniya
	20400 Peradeniya (Sri Lanka)
	E-mail: nadeeshm@eng.pdn.ac.lk
[b]	D. Gogoi, P. Deka, Dr. R. Thakuria
	Department of Chemistry
	Gaunati University
	Guwahati 781014, Assam (India)
	E-mail: ranjit.tnakuria@gmail.com
[6]	ranjit.tnakuria@gaunati.ac.in
[C]	T. XU, DT. IVI. AITIUTIGETSKIS
	Faculty of Chemistry
	1 Pasteura Street 02–003 Warsaw (Poland)
[d]	C Sandaruwan
[u]	Sri Lanka Institute of Nanotechnology
	Pitipapa 10200 Homagama (Sri Lanka)
[e]	Dr. A. C. A. Javasundera
[0]	Department of Chemistry
	University of Peradeniva
	20400 Peradeniva (Sri Lanka)
ſſ	Dr. N. M. Adassooriva
	Department of Chemical & Process Engineering, Faculty of Engineering
	University of Peradeniya
	20400 Peradeniya (Sri Lanka)
	Supporting information for this article is available on the WWW under https://doi.org/10.1002/cssc.202102445
R	This publication is part of a joint Special Collection of Chemistry–Methods

and ChemSusChem including invited contributions focusing on "Methods and Applications in Mechanochemistry". Please visit chemsuschem.org/collections to view all contributions. in numerous bacteria, fungi, algae, plants, as well as in soils as soil enzyme, accelerates the hydrolysis reaction of urea to a rate of 10¹⁵ times compared to non-enzymatic reaction.^[4] The hydrolysis of urea results in formation of carbon dioxide and ammonia along with $\rm NH_4^+$ and $\rm HCO_3^-$ ions as intermediates.^[5] Due to the release of ammonia, the soil pH increases to a significant amount,^[6] while also affecting the global nitrogen cycle.

In order to control stability of urea overhydrolysis, two different approaches have been used. First, by coating or encapsulating urea granules and/ or copolymerization of urea with reactive organic molecules such as formaldehyde,^[7] and secondly, by addition of urease inhibitor along with urea, in order to inhibit the activity of the enzyme.^[8] However, these approaches cannot minimize the solubility as well as hygroscopicity of urea, as factors that reduce leaching of urea during its application to the soil. Very recently, a third approach based on crystal engineering^[9] and mechanochemistry^[10] has been utilized in order to prepare cocrystals of urea (ionic as well as neutral organic) in order to reduce solubility and hygroscopicity of urea. Baltrusaitis and co-workers reported several ionic cocrystal systems of urea with inorganic acids or their metal salts in order to enhance stability of nitrogen fertilizer.[11] Among them, one of the ionic cocrystals of urea with KCl and ZnCl₂ in 1:1:1 has been obtained in dimorphic form based on their method of preparation.^[12] In 2019, Casali et al. reported urea · catechol cocrystal that inhibits urease activity and provides improved environmental stability towards hydration compared to pure urea.^[13] In another report, Aakeröy and coworkers investigated the solubility profile of a few organic cocrystals of urea and proposed urea.pimelic acid and urea.4nitrophenol as potential multi-component solid fertilizers as alternative to urea.^[14] In a very recent report, Friščić and coworkers investigated water-based autocatalysis of mechanochemically synthesized calcium urea phosphate cocrystal using in-situ Raman spectroscopy and synchrotron powder X-ray diffraction (PXRD).^[15]