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Differential gene expression and immunohistochemical 
localization of the key melatonin biosynthesizing enzymes in 
the testis of zebrafish (Danio rerio)
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Zeeshan Ahmad Khan b*, Hridip Kumar Sarmac and Asamanja Chattoraj a
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Biotechnology, Gauhati University, Guwahati, Assam, India

ABSTRACT
This study for the first time showed the presence of melatonin 
biosynthesizing genes (Tph1a, Aanat1, Aanat2 and Asmt) in the 
zebrafish (Danio rerio) testis. Melatonin is reported to be produced 
mainly in the pineal organ, but there is also evidence for the 
presence of melatonin in several extra-pineal sites. The presence 
of a single gene-specific band in agarose gel electrophoresis after 
end-point PCR and a single peak in qRT-PCR melting curve analysis 
indicates that the testis of zebrafish expresses the mRNA of 
enzymes for melatonin biosynthesizing machinery. Furthermore, 
we tried to demonstrate the presence of melatonin biosynthesizing 
enzymes at the translational level by immunohistochemistry, which 
confirms the localization of both Aanat and Asmt proteins in the 
testis of zebrafish. Moreover, melatonin ELISA reveals a higher level 
in the testis than the serum at noon, but a similar concentration is 
observed during the midnight. Moreover, testes display a rhythmic 
mRNA expression of Tph1, Aanat1, and Aanat2, while Asmt is 
arrhythmic. These results support an almost ubiquitous biosynth-
esis of melatonin in the peripheral organs of zebrafish, which can be 
related to a local role of this hormone as an autocrine or paracrine 
manner.
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1. Introduction

Melatonin (5-methoxy-N-acetyltryptamine) is a neuroendocrine-transducing molecule that 
is ubiquitously distributed, functionally diverse and highly conserved (Reiter et al. 2013). 
The molecule is also identified as a potent regulator of circadian and circannual rhythms 
enabling the synchronization of physiological processes, metabolism, and behavior with 
observed variations under different sets of environmental conditions (Falcón et al. 2011). 
Moreover, melatonin is an effective antioxidant and free-radical scavenger, and its other 
functions include shoaling, locomotor activity, vertical migration, food intake, sedation 
(sleep), thermal preference, skin pigmentation, growth, reproduction, immune system and 
osmoregulation (Binkley et al. 1988; Ekstrom and Meissl 1997; Falcon 1999; Falcon et al. 
2007, 2009, 2010; Reiter et al. 2016). Melatonin is synthesized from the amino acid 
tryptophan with the production of serotonin as an intermediate compound by tryptophan 
hydroxylase (Tph1). The conversion of serotonin to melatonin involves two enzymes, 
arylalkylamine N-acetyltransferase (Aanat) and acetylserotonin O-methyltransferase (Asmt).

In mammals, the presence of a similar homologous gene set of Tph is reported (Walther 
et al. 2003; Huang et al. 2008). The expression of these two homologous sets of Tph genes 
are tissue specific; whereby Tph1 is exclusive to pineal organ and peripheral tissues, while 
Tph2 is found in the brainstem raphe nuclei (Patel et al. 2004). In some teleosts, including 
zebrafish (Danio rerio), stickleback, and medaka, three types of Tph genes, namely Tph1a, 
Tph1b, and Tph2 were reported (Lillesaar 2011). Tph1 is mainly distributed in the pineal 
gland and peripheral gut, spleen, and thymus; Tph2 is predominantly expressed in 
abundant neuronal tissues like the brain (Cornide-Petronio et al. 2013). Two Asmt genes 
have been reported in fish genomes, namely Asmt and Asmt2 (also known as hiomt and 
hiomt2). Asmt has been identified in the brain, pineal organ, eye, retina, gastrointestinal 
tract, liver, muscles, gills, gonads and skin of teleost (Velarde et al. 2010; Khan et al. 2016; 
Muñoz-Pérez et al. 2016). It is well established that Aanat is the rate-limiting enzyme in the 
conversion of serotonin to melatonin and the daily rhythm of melatonin production is 
regulated by diurnal changes in Aanat capacity to acetylate serotonin and therefore Aanat 
has been named as “Timezyme” (Klein 2007). Incidentally, two types of Aanat genes 
(Aanat1 and Aanat2) have been identified in teleost fish (Begay et al. 1998; Coon et al. 
1999). Aanat1 is expressed exclusively in the retina, while Aanat2 expression has been 
demonstrated in the pineal organ of several teleost species (Coon et al. 1999; Gothilf et al. 
1999; Zilberman-Peled et al. 2004). Later research showed that the teleost-specific whole- 
genome duplication generated Aanat1 subtypes (Aanat1a and Aanat1b). Aanat1a and 
Aanat1b displayed a wide and distinct distribution in the nervous system and peripheral 
tissues, while Aanat2 appeared as a pineal enzyme (Paulin et al. 2015). The findings of 
rhythmic expression of Aanat2 observed to be lower at midday and higher at midnight in 
the turbot (Scophthalmus maximus), zebrafish, and sole (Solea senegalensis) (Vuilleumier 
et al. 2007; Isorna et al. 2009) are in agreement with the role of Aanat2 in timekeeping 
(Falcon et al. 2009). Additionally, with the use of highly sensitive antibodies raised against 
melatonin and by applying molecular biology tools, melatonin was also identified in other 
extra-pineal tissues including the gut mucosa, airway epithelium, liver, kidney, adrenals, 
thymus, thyroid, pancreas, ovary, carotid body, placenta, endometrium, mast cells, natural 
killer cells, eosinophilic leukocytes, platelets, and endothelial cells (Stefulj et al. 2001; 
Sanchez-Hidalgo et al. 2009).
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Rhythmic production of melatonin at peripheral tissues of fish is a growing topic of 
interest. Following the discovery of melatonin synthesis in the pineal gland, the existence 
of non-pineal melatonin was related to various extra-pineal tissues, like the brain, retina, 
Harderian gland, gastrointestinal tract (GIT) or gut, liver, and gonads of carp (MSaHK 2015; 
Hasan et al. 2016). Expression of melatonin receptor proteins in different extra-pineal 
tissues/organs including the retina, and kidney indicated possible autocrine/paracrine 
functions of melatonin on the target cells (MSaHK 2015). The presence of melatonin in the 
ovary showed the importance of melatonin in ovarian development and maturation in 
mammals as well as lower vertebrates including fish (Chattoraj et al. 2005; Maitra et al. 
2013; Reiter et al. 2013) as it is also known to minimize the free radical damage in the 
ovary by acting directly as a free radical scavenger and ultimately to improve the quality 
of oocytes.

The presence of melatonin biosynthesizing enzyme genes in the reproductive organs 
of many animal species including fish has been reported through recent advanced 
molecular biology techniques. The expression of mRNAs for Aanat and Asmt and their 
activities in protein synthesis in the ovaries (Itoh et al. 1999; Sakaguchi et al. 2013; Coelho 
et al. 2015; He et al. 2016) have been observed. In zebrafish, melatonin synthesizing 
machinery with a daily variation of melatonin in the ovary has been shown (Khan et al. 
2016). In recent years, zebrafish became one of the most studied model organisms for 
understanding the underlying research in biology and medicine (Grunwald and Eisen 
2002) and is also regarded as an ideal organism for chronobiological studies (Vatine et al. 
2011). However, the information regarding the presence of melatonin biosynthesizing 
enzyme genes in the testis of zebrafish is lacking. In this study, we demonstrate the 
expression of mRNA of the melatonin biosynthesizing enzyme genes in the testis of 
zebrafish in a 24-hour cycle, observe day/night differences in melatonin concentration 
in blood serum, and testis and finally indicate tissue-specific localization of Aanat and 
Asmt genes by immunohistochemistry.

2. Materials and methods

A. Animals and housing

Fish care and study schedule were in agreement as per the international standards 
(Portaluppi et al. 2010). Ethical clearance collected from the Institutional Animals Ethical 
Committee constituted as per the recommendations of the Committee for Control and 
Supervision of Experiments on Animals (CPCSEA), Government of India.

Wild-type male and female zebrafish (Danio rerio) (2–3 months old) were obtained from 
North-East India and kept for 2–3 months in 50-l Glass aquaria (30 fish/aquaria) under 
normal photoperiod which is 12 L:12D (light: dark) for acclimatization (300 lux with 
standard household fluorescent tube) (Khan et al. 2018). The light was on at 06:00 am 
and turned off at 06:00 pm, maintained by the timer (Frontier Digital Timer, Taiwan) (Reed 
and Jennings 2011). The water temperature was maintained at 28 ± 0.5°C using immer-
sion heaters (100 W, RS Electrical, India) located in each aquarium. Water was aerated and 
recirculated through a biological filter (E-Jet, P.R.C.). The pH, hardness, and other para-
meters of water were maintained under standard conditions (Westerfield 2000) at the 
IBSD Zebrafish facility, Imphal in Manipur, India (Khan et al. 2016). Fish were fed thrice 
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a day, with commercial floating type small pellets (Perfect Companion Group Co. Ltd., 
Thailand) in the morning (9:00 am, ZT03), midday (1:00 pm, ZT07), and live Artemia nauplii 
(Artemia cysts, Ocean Star International, USA) in the evening (5:00 pm, ZT11). The wild- 
type embryos were gained from pairing gravid females and males in the evening and 
spawning occurred in the first hour of light’s on (Westerfield 2000) in the institutional 
zebrafish facility. These embryos were raised in the condition mentioned above and 
further breed to get the F2 generation. The adult male fish of 6–7 months old from F2 
generation were used in all experiments when they reached a total body length of 
4.5 ± 0.3 cm and body mass of 0.5 ± 0.10 g.

B. Experiment designs and sampling

The acclimatized adult male zebrafish were transferred to a new experimental tank 
adjusted at normal temperature (28°C) with normal photoperiod. Fish were fed thrice 
a day, (i) morning (9:00 am, ZT03), (ii) noon (1:00 pm, ZT07), and (iii) evening (5:00 pm, 
ZT11). The light was turned on at 06:00 am and off at 06:00 pm with an automated timer 
for normal photoperiod (LD) of 12 L-12D. The fish were kept for 2 weeks at the above- 
mentioned condition before sampling. The sampling time was scheduled in every 4-hour 
interval at six time points (ZT22, ZT02, ZT06, ZT10, ZT14, and ZT18) in a 24 h daily cycle for 
gene expression study in testis. During the collection of samples, adult male zebrafish 
were taken in 0.1% Tricane (Sigma–Aldrich, USA) solution then kept in ice for anaesthesia 
before they were euthanized.

At each time point, the testis from five (n = 5) fish was taken out by dissecting body 
cavities, then washed with PBS (pH 7.4) and quickly stored in TRIzol® (Ambion, Carlsbad, 
CA, USA) and frozen at −80°C before total RNA extraction. Blood was collected for serum 
melatonin measurement and testis tissues from three (n = 3) zebrafish were collected in 
[Phosphate buffer saline (PBS, Sigma–Aldrich)] for Enzyme-Linked Immunosorbent Assay 
(ELISA) and in [4% paraformaldehyde (PFA, Sigma–Aldrich)] for Immunohistochemistry 
(IHC) at two-time points (ZT06 and ZT18).

C. RNA extraction and cDNA synthesis

Total RNA was isolated from the homogenized whole testis of zebrafish with TRIzol® 
Reagent (Life Technologies, USA) according to the manufacturer’s instructions. Then RNA 
pellets were eluted in RNase-free water (DEPC water, Sigma–Aldrich, USA). RNA quality 
and quantity were measured by using a Nano Spectra (Shimadzu, Japan) then 5 μg of total 
RNA was treated with DNA-free™ Kit” (Ambion®RNA by Life Technologies™, USA) to 
remove genomic DNA contamination. RNA integrity was checked by staining 28S and 
18S RNA bands with GelRed™Nucleic Acid Gel Stain (Biotium, USA) nucleic acid stain on 
0.8% agarose gel. One microgram of DNase treated total RNA was reverse transcribed into 
cDNA using “High Capacity cDNA Reverse Transcription Kit” (Applied Biosystems™, USA) 
according to the manufacturer protocol. The cDNA synthesis was carried out in the 
“ProFlex™ Base PCR System” (Applied Biosystems®, Inc, ABI, USA) following the manufac-
turer protocol. Briefly, 20 μl reaction containing 2 μl 10X RT Buffer, 0.8 μl 10 mM dNTP Mix, 
2 μl 10X RT random primer, 1 μl MultiScribe Reverse Transcriptase (50 U/μl), 1 μl of RNase 
Inhibitor (20 U/μl),10 μl DNase treated RNA and the final volume made up of 20 μl by 
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nuclease-free water. The conditions for PCR cycling for cDNA synthesis were 25°C for 
10 min, followed by 37 °C for 2 hours, 85 °C for 5 min and a final incubation at 4°C.

D. Endpoint PCR

Endpoint PCR amplification was performed to confirm the presence of melatonin bio-
synthesizing enzyme genes in testis. PCR amplification was done with 2 μl of the earlier 
obtained cDNA in a total volume of 25 μl with 0.5 μl of AmpliTaq Gold® DNA Polymerase 
(5 U/μL) (Applied Biosystem™, USA), 2.5 µl PCR buffer II (10X) (Applied Biosystem™, USA), 
0.5 μl of 10 mM dNTP Mix (Invitrogen, USA), 1.5 μl of 25 mM Mgcl2 solution (Invitrogen, 
USA), 1 μl of each forward and reverse primer (Table 1) and the final volume made up to of 
25 μl by nuclease-free water. Rpl13a was used as a positive control of the quality of the 
cDNAs obtained and similarly, a master mix without the cDNA was used for the negative 
control. The PCR reaction condition includes an initial denaturation step at 95°C for 
10 min, followed by 30 cycles of 95°C for 30 s, annealing at 60°C for 30 s and extension 
at 72°C for 30 s. PCR products were separated on 2% agarose gel electrophoresis for 
viewing the endpoint PCR product.

E. Quantitative real-Time PCR

The expression level of genes was measured by quantitative reverse transcriptase- 
polymerase chain reaction (qRT-PCR) using Jumpstart SYBR Green/ROX qPCR Master Mix 
(Sigma–Aldrich, USA). qRTPCR was carried out on a StepOnePlus™ Real-Time PCR System 
(Applied Biosystems®, Inc, ABI, USA). Primers for this study were used from the published 
data (Khan et al. 2016) and synthesized from IDT, India (Table 1). The PCR reaction 
condition includes an initial denaturation step at 95°C for 10 min, followed by 40 cycles 
of 95°C for 15 s, annealing at 60°C for 30 s, and extension at 72°C for 30 s. Melting curve 
analysis (Tm) was performed to confirm single-gene amplification by designated primers. 
Amplification was performed in 10 μl reaction volume containing forward and reverse 
primers, qPCR Master Mix, and cDNA. Technical triplicates were used for each sample. The 

Table 1. List of primer sequences used in quantitative real-time PCR (RT-PCR) analysis. F, forward; 
R, reverse. *Accession Number is provided by the National Centre for Biotechnology Information, 
Bethesda, MD, USA. The primers were taken from the published data; references have been given 
in the text.

Gene Primer Sequence 5ʹ-3’ Amplicon Size Accession Number*

Tph1a F: ACTCTATCCCTCACACGCCT 
R: TGTTGTCTTCACGGGAGTCG

83 NM_178306.3

Aanat1 F: CTTCCGCCAGCAAGGAAAAG 
R: CACGGCGCACATAAGGTAGA

80 NM_200704.1

Aanat2 F: CAGGGCAAAGGCTCCATCT 
R: CAGGCAGACAGCGCAGGT

58 NM_131411.2

Asmt F: GACCTGTTTGAAGCCCTCTACA 
R: ACAGATGGTCTTGTACGGTGTC

132 NM_001114909.1

Rpl13a F: TCTGGAGGACTGTTAGAGGTATGC 
R: AGACGGACAATCTTGAGAGCAG

148 NM_212784.1

BIOLOGICAL RHYTHM RESEARCH 5



relative expression of the gene was calculated by the 2[-Delta Delta C(T)] method (Livak 
and Schmittgen 2001) using the Rpl13a gene as a reference (Tang et al. 2007).

F. ELISA

(a) Melatonin ELISA in serum
The blood was collected according to the published protocol (Babaei et al. 2013) and was 
centrifuged at 3000 × g at 4°C for 20 min. The supernatant (serum) was collected, and 
melatonin levels were quantified using Fish Melatonin (MT) ELISA Kit (Gen Asia, China) 
(Yumnamcha et al. 2017), according to the manufacturer’s instruction. Absorbance was 
measured at 450 nm using a Multiskan spectrum reader (Thermo Fisher, USA). The 
concentration of melatonin was presented as pg per ml (pg/ml) of serum.

(b) Melatonin ELISA in testis
For melatonin quantification in the testis, 100 mg of the testis tissues were used. The 
tissues were sonicated and centrifuged twice at 3000 × g at 4°C for 20 mins until the 
supernatant became clear. The clear supernatant was used for the quantification of 
melatonin using Fish Melatonin (MT) ELISA Kit (GA-E0011FS, Gen Asia, China) 
(Yumnamcha et al. 2017). Absorbance was taken at 450 nm using a Multiskan spectrum 
reader (Thermo Fisher, USA). The concentration of melatonin in the testis was presented 
as pg per 100 mg of tissue.

(c) Immunohistochemistry
The presence of Aanat and Asmt in the zebrafish testis was studied by immunohisto-
chemical staining. The above-described tissue samples for IHC were washed twice in 0.1 M 
PBS and immersed in PBS, containing 30% sucrose at 4°C for overnight, then embedded in 
Jung TISSUE FREEZING MEDIUM@ (Leica Microsystems Nussloch GmbH). Frozen testis 
section (8 μm) was prepared with Leica CM3050S cryostat microtome. 
Immunohistochemistry was conducted with some modifications as described previously. 
After keeping at room temperature for 15 minutes, the sections were first rinsed in PBS 
and then incubated in PBS containing 0.2% Triton-X100 followed by blocking in 3% BSA 
(dissolve in 0.1 M PBS) for 1 hour at room temperature. After overnight incubation with 
primary antibody rabbit polyclonal Anti-Arylalkylamine-N-acetyltransferase Antibody 
(1:100; GA-P6820RA, GenAsia, China) and other slides with rabbit monoclonal Anti- 
ASMT antibody (1:10; Ab180511, Abcam, UK). Accordingly, Alexa Fluor®488 donkey anti- 
rabbit IgG (H + L), (1:200, Life TechnologyTM., USA) for Aanat and goat anti-rabbit IgG 
(H + L) highly cross-adsorbed Secondary Antibody, Alexa FlourTM.594 for Asmt (1:200, 
Invitrogen; USA) were used as the secondary antibody.

Then, the tissues were counterstained with 4′,6-diamidino-2-phenylindole (DAPI); 
(Invitrogen, USA) for nuclei staining. For negative control, a separate set of tissues was 
treated with secondary antibodies only. The slides were covered with Vectashield (H-1000; 
Vector Laboratories, Inc., Burlingame, California, USA) and observed under the Nikon A1 
R HD25 confocal microscope (NIKON CORPORATION, Konan, Minato-ku, Tokyo, Japan).
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G. Statistical analysis

Changes in expression of genes and distribution of the level of melatonin during different 
time points in the testis and serum were analyzed by one-way ANOVA (SPSS 16.0 software; 
Macrovision Corporation Santa Carlo, California, USA) followed by Tukey’s post hoc test to 
compare the difference between the time points. P < 0.05 was considered statistically 
significant. Rhythm analysis was done using COSINOR PREIODOGRAM 2015 (Boise 
University, USA) (Refinetti et al. 2007) based on cosinor rhythmometry (Nelson et al. 
1979). Nonlinear regression curve was fitted in data using formula “Y = Mesor + 
Amplitude Cos (Frequency X + Acrophase)” with Prism software (GraphPad; GRAPHPAD 
Software Inc., CA, USA).

3. Result

3.1. Expression analysis of melatonin biosynthesizing enzyme genes in the whole 
testis by Endpoint PCR

The most widely used method for analyzing the PCR product is the use of agarose gel 
electrophoresis, which separates DNA products based on size and charge. It allows the 
determination of the presence and the size of the PCR product in the form of a band by 
running a predetermined set of DNA products with known sizes. RNA was isolated from the 
testis samples and the amplification assay was performed using gene-specific PCR. The 
amplified products corresponding to the Tph1a, Aanat1, Aanat2, and Asmt genes were 
obtained by running 2% agarose gel electrophoresis after completion of the endpoint PCR 
(Figure 1(a)). A single band was obtained in all genes using the described primers (Table 1). 
Moreover, there was no amplification found in the negative control (without cDNA).

3.2. Expression analyses of melatonin biosynthesizing enzyme genes in the whole 
testis by qRT-PCR

The qRT-PCR assay is used to further confirm the endpoint PCR results. The transcripts for 
the melatonin-synthesizing genes (Tph1a, Aanat1, Aanat2, and Asmt) obtained from the 
RNA isolated from the testis samples were detected by qRT-PCR. The melting curve 
analysis showed (Figure 1(b)) a single peak in all genes made by the primers (Table 1), 
no peak was observed in the – ve control. Melting peak analysis allows product identifica-
tion during PCR without subsequent electrophoresis. The technique can be used to 
identify single-copy sequences amplified from genomic DNA or cDNA in which a single 
peak corresponds to one amplicon.

3.3. Immunohistological localization of melatonin synthesizing enzymes in testis

Aanat and Asmt enzyme proteins, which are involved in melatonin biosynthesizing 
machinery, are localized in the sections of zebrafish testis using immunohistochemistry. 
A detectable immunostaining signal was found for Aanat and Asmt in the testis (Figure 2). 
We have observed a specific green colour pigment due to binding of anti-Aanat antibody 
which further binds to secondary antibody labelled with green-fluorescent dye. This 
specified the presence of Aanat protein in the testis. Similarly, the specific red colour 
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pigment was observed due to the binding of anti-Asmt antibody, which binds to the 
secondary antibody labelled with red colour fluorescent dye. This confirms the presence 
of Asmt protein in the testis of zebrafish. This indicates the presence of independent 
melatonin biosynthesizing machinery in the testis of zebrafish.

3.4. Daily rhythmic expression analysis of melatonin biosynthesizing enzyme 
genes in the whole testis

The expression levels of Tph1a, Aanat1, Aanat2, and Asmt in the testis of zebrafish represented 
a diurnal variation (Figure 3). The cosinor analysis exhibited a significant diurnal rhythmicity of 
Tph1a (p = 0.01), Aanat1 (p = 0.04), and Aanat2 (p = 0.01) in their expression under normal 
photoperiodic condition. However, the expression of Asmt (p = 0.74) was arrhythmic in testis 
(Table 2). Moreover, the acrophase of expression for Aanat2 (ZT16) and Asmt (ZT21) was in the 
dark phase, but it is in the light phase for Tph1 (ZT07) and Aanat1 (ZT02) (Table 2). It is also 
observed that the Aanat2 transcript recorded the maximum mesor and amplitude whereas 
Asmt was with the minimum mesor and amplitude (Table 2; Figure 3).

Figure 1. (a) Agarose gel electrophoresis (2%) showing the end point PCR amplified product of 
melatonin biosynthesizing genes obtained from the testis of zebrafish tissue. DNA-free™ Kit treated 
RNA was taken as template for RT-ve (as control) amplification. Representative figure from testis is 
displayed here. (b) Melting curve analysis of melatonin biosynthesizing (Tph1, Aanat1, Aanat2 and 
Asmt) enzyme genes and reference gene (Rpl13a) are showing the accuracy of amplification of desired 
genes. Representative figure from testis is displayed here.
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3.5. Measurement of melatonin

1) Melatonin concentration in testis tissues
Melatonin quantification in the testis tissues was measured at two different time points 
(ZT06 and ZT18). The results revealed a high level of melatonin concentration at night 
(ZT18) (Figure 4(b)). However, the testis sample extracted during the day (ZT06) contained 
a low level of melatonin. These ELISA results show the presence of rhythmic synthesis of 
melatonin in the testis of zebrafish.

Figure 2. The section showing immunohistochemical staining. Aanat (Green) and Asmt (Red). The 
arrows show localization of Aanat and Asmt. A negative control for each gene lacks both immunor-
eactivities. These slides were labelled only with the secondary antibody. All images are merged with 
DAPI showing nuclei in blue. Representative images which displayed here, were taken from multiple 
sections of zebrafish testis.
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2) Melatonin concentration in serum
As expected, the samples extracted from blood serum revealed a high level of melatonin 
during the night as compared with the sample extracted during the daytime with 
a statistically significant difference between day and night (Figure 4(a)). The level of 
melatonin at noon (ZT06) in the serum sample was lower than the testis sample, whereas 
the concentration of melatonin was similar at midnight (ZT18) samples in both testis and 
serum. This indicates local biosynthesizing machinery in the testis of zebrafish.

4. Discussion

The present study demonstrates the presence of melatonin biosynthesizing enzyme 
genes (Aanat and Asmt) in the testis of Zebrafish at transcriptional as well as translational 

Figure 3. Transcriptional profile of melatonin synthesizing genes under LD in the whole testis of 
zebrafish. Expression profile of (a) Aaant1, (b) Aaanat2, (c) Asmt and (d) Tph1. The relative quantifica-
tion values in the graph are shown as the mean ± SEM (n = 6). One-way ANOVA followed by post–hoc 
Tukey’s test of relative quantification value has been done. Group sharing common letter shows no 
significant difference (P < 0.05). Nonlinear regression curve was fitted to all data CH and ZT in the 
X-axis stand for Clock Hour and Zeitgeber Time, respectively.
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levels, indicating the local production of this indoleamine. Previously, our team showed 
the presence of independent melatonin-synthesizing machinery in various tissues, includ-
ing the ovary of zebrafish (Khan et al. 2016) and various extra-pineal organs of carp (Rajiv 
et al. 2016), which supports the present finding in testis. Moreover, the presence of 
melatonin synthesizing enzyme genes has already been shown using endpoint PCR in 
the testis of rat (Stefulj et al. 2001), ram (Gonzalez-Arto et al. 2016), and several peripheral 
organs of goldfish (Velarde et al. 2010).

For the determination of the presence of Aanat and Asmt proteins, IHC was performed. 
Our IHC data cumulatively demonstrate that both Aanat and Asmt proteins were localized 
in the testis of zebrafish (Figure 2). These results are consistent with the findings of the 
previous studies where the presence of Aanat and Asmt was detected in rat and ram testis 
by IHC. However, we have not performed the localization of Tph1 as it is not directly 
involved in the melatonin biosynthesizing machinery but involved in serotonin synthesis.

After confirming the presence of melatonin biosynthesizing enzyme genes at mRNA 
and translational level, we tried to evaluate the level of melatonin in testes and compare it 
with serum melatonin at noon and midnight under LD with scheduled feeding. Our 
results followed the classical secretion pattern of melatonin in zebrafish testis, high at 
midnight and low at noon. Moreover, the level of melatonin at noon in the serum sample 
was lower than the testis sample, whereas the concentration of melatonin in serum was 
comparable with the melatonin in the testis sample during the night (Figure 4). It has 
been reported that many extra-pineal tissues have usually higher concentrations of 
melatonin than plasma throughout the 24 h cycle. Similarly to our result, high melatonin 
concentration detected during the day in ram seminal plasma might come from the extra- 
pineal organs other than pineal gland (Gonzalez-Arto, Hamilton, Gallego, Gaspar-Torrubia, 
Aguilar, Serrano-Blesa, Abecia, Pérez-Pé, Muiño-Blanco, Cebrián-Pérez and Casao 2016, 
Venegas et al. 2012). Therefore, comparative analysis of melatonin in serum and testis 
indicates that melatonin presence in testis might be locally synthesized. The synthesis and 
presence of melatonin in multiple sites of the ovary and testes reflect its potential intra-, 
auto-, and paracrine regulation of reproductive physiology, which guarantees the quality 
of the egg and sperm differentiation (Acuña-Castroviejo et al. 2014).

Table 2. Cosinor analysis of melatonin genes (Tph1, Aanat1, Aanat2 and Asmt) in the Testis of Zebrafish 
(n = 5).

Tph1 Aanat1 Aanat2 Asmt

Mesor 4.45 ± 0.40 2.45 ± 0.19 6.85 ± 0.50 1.78 ± 0.07
Amplitude 2.40 

(1.315 to 3.556)
0.76 

(0.2561 to 1.399)
4.21 

(2.735 to 5.587)
0.09 

(0.0786 to 0.1512)
Acrophase 12 h 57 min 08 h 27 min 22 h 54 min 03 h 14 min

[11 h 30 min; 13 h 
30 min]

[7 h 15 min; 9 h 
51 min]

[21 h 48 min; 23 h 
24 min]

[2 h 90 min; 4 h 
27 min]

F value 5.97 3.75 12.86 0.27
Degrees of 

Freedom
18 18 18 18

p value 0.01* 0.04 0.00 0.76
% Rhythm 44.40% 33.30% 63.20% 3.60%

The table is showing the parameters defining the gene expression rhythms in testis of Zebrafish with oscillation 
(* P < 0.05). The confidence interval (95%) of the amplitude values are shown inside the first brackets and the confidence 

interval (95%) of the acrophase values are shown inside the square brackets. Mesor are expressed as the value ± SE. 
Zebrafish were maintained under normal photoperiodic condition with scheduled feeding.
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Further, after confirming the presence of melatonin biosynthesizing enzyme genes in 
testes, we have demonstrated the daily rhythmicity (4 h interval) of melatonin 

Figure 4. Level of melatonin at normal photic conditions in the blood serum and testis of zebrafish. 
Concentration of melatonin in normal photic conditions in the (a) blood serum and (b) testis of 
zebrafish (n = 6). Different letters represent a significant difference as determined by ANOVA followed 
by Tukey’s post-hoc test (p < 0.05).
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biosynthesizing enzyme genes in zebrafish testis tissues in LD. One-way ANOVA of the 
daily rhythm of melatonin biosynthesizing enzyme genes along with cosinor analysis 
revealed that mRNA expression of Tph1, Aanat1, Aanat2 are rhythmic, while Asmt is 
arrhythmic (Table 2; Figure 3). Our results on the pattern of differential expression of 
these genes were similar to the earlier studies performed in the ovary. The rhythmicity of 
Aanat2 and its acrophase during the dark are consistent with the level of melatonin 
during the night. These results support the role ofAanat2 as a rate-limiting enzyme of 
melatonin (Falcon et al. 2010; Khan et al. 2016). Whitmore et al. has demonstrated that 
every organ of zebrafish is photosensitive and generates their rhythms (Whitmore et al. 
1998). Similarly, our study also revealed the rhythmic expression of Aanat2 and peak at 
midnight along with the high concentration of melatonin during the night indicates that 
the zebrafish testis might be photosensitive.

Moreover, there is a growing number of evidence suggesting that melatonin plays 
a significant role in the maturation of gonads. Melatonin secreted in the testes could also 
regulate spermatogenesis by modulating the progression of germ cells to spermatozoa 
and enhance testosterone production by binding to its receptors in the Leydig cells 
(Vatine et al. 2011; González-Arto et al. 2017; Tabecka-Lonczynska et al. 2017; Deng 
et al. 2018). Oxidative stress is one of the most important factors contributing to poor 
semen quality. Intensive research has revealed that melatonin is an antioxidant molecule, 
which directly protects the spermatozoa from oxidative damage that could impair male 
fertility (Agarwal et al. 2008). Therefore, the melatonin secreted by the testes of zebrafish 
can have the same function as that found in higher mammals. In this scenario, zebrafish 
can be a good model to study the effect of different environmental cues like photoperiod, 
the temperature on the reproductive physiology of fish. In the context of changing 
environments, reproductive physiology needs to be understood properly as the oxidative 
damage caused by the changing environment to the gametes is an important cause of 
infertility.

In conclusion, our study shows that the testis of zebrafish has the machinery to 
synthesize melatonin, endpoint PCR, and melting curve analysis confirmed the pre-
sence of mRNA and IHC confirms the protein of melatonin biosynthesizing machinery. 
Furthermore, melatonin ELISA and the daily rhythm profile of melatonin biosynthesiz-
ing enzyme genes have demonstrated that testis of zebrafish might be 
photosensitive.

Studies in goldfish by other groups and previous studies from our lab on zebrafish and 
carp catla showed rhythmic expression of melatonin synthesizing genes and clock genes 
in a 24-hour cycle. However, sampling over one cycle – a single 24-hour window, is 
certainly not sufficient to prove the circadian rhythmicity so sampling over a 48-hour 
window will be needed to confirm the rhythmic expression of melatonin biosynthesizing 
enzyme genes.
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