M. Sc. Environmental Science Syllabus (CBCS) Department of Environmental Science Gauhati University

1. Duration: 4 Semesters, 2-year duration

2. Eligibility Criteria for Admission:

Students having general B.Sc. in 10+2+3 pattern with Major in any science subject securing a minimum of 50% marks or equivalent GP/CGPA in the major subject or B.E./B. Tech/B. Sc. Agriculture securing a minimum of 55% marks or equivalent GP/CGPA are eligible for admission into the M. Sc. course (CBCS) in Environmental Science. All candidates are required to appear in a written admission test based on general environmental issues (as per UGC syllabus on Environmental Studies) and basic sciences. The selection will be made on the basis of the performance in the Admission Test only. In finalizing the list, consideration will be made to ensure the representation of different subjects/disciplines in view of the multidisciplinary nature of the course and will be decided by the Departmental Advisory Committee (DAC) of the Department.

3. Course Structure:

	FIRST SEM	IESTE	R						
Course Code	COURSE NAME	Lecture	Tutorial	Practical	Credit	Hours	Total Marks	Course Type	Nature
EVS 1013	Man, Environment and Environmental Issues	3	0	0	3	3	50	Core	Graded
EVS 1023	Environmental Biology	3	0	0	3	3	50	Core	Graded
EVS 1033	Environmental Chemistry	3	0	0	3	3	50	Core	Graded
EVS 1043	Environmental Soil Science	3	0	0	3	3	50	Core	Graded
EVS 1053	Environmental Earth Science	3	0	0	3	3	50	Core	Graded
EVS 1063	Analytical Methods for Environmental Monitoring	3	0	0	3	3	50	Core	Graded
EVS 1072	Practical – I: Ecology & Geosciences	0	0	3	2	6	40	Core	Graded
EVS 1082	Practical – II: Environmental Chemistry and Instrumental Analysis	0	0	3	2	6	40	Core	Graded
EVS 1092	Field Study (1 week duration)				2		20	Core	Graded
	Semester Total	18	0	6	24	30	400		
	SECOND SE	MEST	TER			•			
Course Code	COURSE NAME	Lecture	Tutorial	Practical	Credit	Hours	Total Marks (Ext.+ Int.)	Course Type	Nature
EVS 2013	Environmental Statistics and Data Analysis	3	0	0	3	3	50	Core	Graded

EVS 2023	Environmental Remote Sensing and GIS Applications	3	0	0	3	3	50	Core	Graded
EVS 2033	Environmental Pollution – Monitoring and Control Technologies	3	0	0	3	3	50	Core	Graded
EVS 2043	Ecosystem Dynamics, Biodiversity and Conservation Biology	3	0	0	3	3	50	Core	Graded
EVS 2053	Environmental Health and Eco- toxicology	3	0	0	3	3	50	Core	Graded
EVS 2063	Energy and Environment	3	0	0	3	3	50	Core	Graded
EVS 2072	Practical – III: Remote Sensing &GIS	0	0	3	2	6	40	Core	Graded
EVS 2082	Practical – IV: Pollution, Ecosystem & Toxicology	0	0	3	2	6	40	Core	Graded
EVS 2092	Summer Internship/Field Work (Minimum 10 days)				2		20	Core	Graded
	Semester Total	18	0	6	24	30	400		
	THIRD SEM	IESTI	ER						
Course Code	COURSE NAME	Lecture	Tutorial	Practical	Credit	Hours	Total Marks	Course Type	Nature
EVS 3013	Environmental Biotechnology and Microbiology	3	0	0	3	3	50	Core	Graded
EVS 3023	Eco-hydrology and Watershed Management	3	0	0	3	3	50	Core	Graded
THE ADA	Natural Resource Management and Sustainable Development	6	0	0	6	6	100	Open/ In-house	Graded
EVS 3036	Sustainable Development								
EVS 3036 EVS 3043	Environmental Hazards and their Mitigation (Group A : Elective I)	3	0	0	3	3	50	Elective	Graded
EVS 3036 EVS 3043 EVS 3053	Environmental Hazards and their Mitigation (Group A : Elective I) Disaster Risk Reduction and Management (Group A : Elective II)	3	0	0	3	3	50 50	Elective Elective	Graded Graded
EVS 3036 EVS 3043 EVS 3053 EVS 3063	Environmental Hazards and their Mitigation (Group A : Elective I) Disaster Risk Reduction and Management (Group A : Elective II) Industrial Pollution Control and Waste Management (Group B :Elective I)	3 3 3	0 0 0 0	0 0 0	3 3 3	3 3 3	50 50 50	Elective Elective Elective	Graded Graded Graded
EVS 3036 EVS 3043 EVS 3053 EVS 3063 EVS 3073	Environmental Hazards and their Mitigation (Group A : Elective I) Disaster Risk Reduction and Management (Group A : Elective II) Industrial Pollution Control and Waste Management (Group B :Elective I) Municipal Water Supply and Wastewater Treatment (Group B : Elective II)	3 3 3 3	0 0 0 0	0 0 0 0	3 3 3 3	3 3 3 3	50 50 50 50	Elective Elective Elective Elective	Graded Graded Graded Graded
EVS 3036 EVS 3043 EVS 3053 EVS 3063 EVS 3073 EVS 3082	Environmental Hazards and their Mitigation (Group A : Elective I) Disaster Risk Reduction and Management (Group A : Elective II) Industrial Pollution Control and Waste Management (Group B :Elective I) Municipal Water Supply and Wastewater Treatment (Group B : Elective II) Practical – V: Environmental Biotechnology and Microbiology	3 3 3 3 0	0 0 0 0 0	0 0 0 0 3	3 3 3 3 2	3 3 3 3 6	50 50 50 50 40	Elective Elective Elective Elective Core	Graded Graded Graded Graded
EVS 3036 EVS 3043 EVS 3053 EVS 3063 EVS 3063 EVS 3073 EVS 3082 EVS 3092	Environmental Hazards and their Mitigation (Group A : Elective I) Disaster Risk Reduction and Management (Group A : Elective II) Industrial Pollution Control and Waste Management (Group B :Elective I) Municipal Water Supply and Wastewater Treatment (Group B : Elective II) Practical – V: Environmental Biotechnology and Microbiology Practical – VI: Eco-hydrology and Watershed Management	3 3 3 0 0	0 0 0 0 0 0	0 0 0 0 3 3	3 3 3 2 2	3 3 3 6 6	50 50 50 50 50 40	Elective Elective Elective Elective Core Core	Graded Graded Graded Graded Graded
EVS 3036 EVS 3043 EVS 3053 EVS 3063 EVS 3073 EVS 3082 EVS 3092 EVS 3102	Environmental Hazards and their Mitigation (Group A : Elective I) Disaster Risk Reduction and Management (Group A : Elective II) Industrial Pollution Control and Waste Management (Group B :Elective I) Municipal Water Supply and Wastewater Treatment (Group B : Elective II) Practical – V: Environmental Biotechnology and Microbiology Practical – VI: Eco-hydrology and Watershed Management Project Seminar	3 3 3 0 0	0 0 0 0 0 0	0 0 0 3 3	3 3 3 2 2 2 2	3 3 3 6 6	50 50 50 50 40 40 20	Elective Elective Elective Core Core Core	Graded Graded Graded Graded Graded Graded

	FOURTH SE	MEST	ER						
Course Code	COURSE NAME	Lecture	Tutorial	Practical	Credit	Hours	Total Marks (Ext.+ Int.)	Course Type	Nature
EVS 4013	Environmental Impact Assessment	3	0	0	3	3	50	Core	Graded
EVS 4023	Environmental Law and Management	3	0	0	3	3	50	Core	Graded
EVS 4033	Climate Change and Global Environment	6	0	0	6	6	100	Open/ In-house	Graded
EVS 4043	Seismology and Seismic Hazards in NE India (Group A: Elective- III)	3	0	0	3	3	50	Elective	Graded
EVS 4053	Flood Hydrology and Flood Hazards in NE India (Group A: Elective –IV)	3	0	0	3	3	50	Elective	Graded
EVS 4063	Solid and Hazardous Waste Management (Group B: Elective- III)	3	0	0	3	3	50	Elective	Graded
EVS 4073	Green Chemistry (Group B: Elective – IV)	3	0	0	3	3	50	Elective	Graded
EVS 4083	Project				6	12	100 (75+25)		
	Semester Total	18	0	0	24	30	400		
	Course Total	72			96	132	1600		

<u>Specialization:</u> Students shall have to choose their specializations from **any one** of the following groups (Group A or Group B):

Group A:	<u>Natural Hazards & Disaster Management</u>
	- EVS 3043 (Elective - I)
	- EVS 3053 (Elective - II)
	- EVS 4043 (Elective –III)
	- EVS 4053 (Elective – IV)
Group B:	Environmental Pollution – Monitoring, Control & Management
Group B:	 <u>Environmental Pollution – Monitoring, Control & Management</u> EVS 3063 (Elective- I)
Group B:	 Environmental Pollution – Monitoring, Control & Management EVS 3063 (Elective- I) EVS 3073 (Elective - II)
Group B:	 Environmental Pollution – Monitoring, Control & Management EVS 3063 (Elective- I) EVS 3073 (Elective - II) EVS 4063 (Elective –III)

For the purpose of end semester examination, each Theory paper carrying 50 (40 +10) marks shall be of 3 hours duration and each Practical paper carrying 40(32+8) marks shall be of 5 hours duration

COURSE OUTCOMES

Course Code	Course Title	Course Outcome
		First Semester
EVS 1013	Man, Environment and Environmental Issues	An attempt has been made to teach the students about overall background of the subject. Further, the students would be able to understand the man-environment relationships and the causes and consequences of environmental issues.
EVS 1023	Environmental Biology	Students will acquire knowledge on flora, fauna and biotic environment required for the study of the environmental status of a locality/region.
EVS 1033	Environmental Chemistry	The students would have background knowledge of chemistry required for the analysis of environmental samples for environmental monitoring and for handling environmental problems.
EVS 1043	Environmental Soil Science	The students will learn about the formation, characteristics and classification of soil. They will also understand the effects of human activity on soil quality and the causes of land degradation and its remedial measures.
EVS 1053	Environmental Earth Science	The knowledge on earth processes which are related with weather and climate, soil characteristics and natural hazards are very important for the environmental science students and this course will serve this purpose.
EVS 1063	Analytical Methods for Environmental Monitoring	The course is aimed to train the students for using different kinds of analytical instruments as well as methods used for the analysis of environmental samples.
EVS 1072	Practical – I: Ecology & Geosciences	It helps the students in their field study, especially for ecological analysis, soil analysis, etc.
EVS 1082	Practical – II: Environmental Chemistry and Instrumental Analysis	Students would get hands-on training on different equipments used for environmental sample analysis.
EVS 1092	Field Study (1 week duration)	It helps the students to learn the techniques for studying the environmental conditions/status of a locality.
Second Se	mester	
EVS 2013	Environmental Statistics and Data Analysis	The students would learn how to handle and analyse environmental data sets for drawing statistical inference and decision making.

EVS 2023	Environmental Remote Sensing and GIS Applications	Remote sensing is an important tool for environmental data acquisition. So, the students must have background knowledge on different kinds of remote sensing techniques and they must be well acquainted with the use of remote sensing data processing and analysis softwares. Students would learn how to collect both spatial and non-spatial data and would be able to analyse these data by using GIS software.
EVS 2033	Environmental Pollution – Monitoring and Control Technologies	The students would be able to understand the problem of environmental pollution and have a background for monitoring environmental pollution.
EVS 2043	Ecosystem Dynamics, Biodiversity and Conservation Biology	The course is aimed to familiarise the students about the functioning of ecosystems, human impact on ecosystems and the students would gather knowledge for maintaining an ecosystem.
EVS 2053	Environmental Health and Eco-toxicology	The students would be well acquainted with environment related diseases and their causes so that they would be able to participate in the environmental management of these diseases. Moreover, the students would acquire knowledge about the toxicants and their route of entry to the environment and its consequences.
EVS 2063	Energy and Environment	The students would be able to know the different kinds of energy resources, their availability and utility as well as their environment related aspects.
EVS 2072	Practical – III: Remote sensing &GIS	The students would get hands-on training for the use of remote sensing and GIS softwares.
EVS 2082	Practical – IV: Toxicology	The students would get hands-on training on toxicological analysis
EVS 2092	Summer Internship/Field Work (Minimum 10 days)	The students would get an exposure on environmental management practices in developmental projects, factories, industries etc.
Third Sem	ester	
EVS 3013	Environmental Biotechnology and Microbiology	Aim of this course is to flourish the students in value based system by exploring and nurturing their potential to discover novel bio products and to extend services of whole living system and the environment and making them technologically and ethically of high quality to serve the society and to develop their skill as per present needs of biotechnology and microbiology.
EVS 3023	Eco-hydrology and Watershed Management	Aim of this course is to make aware the students regarding the ecological aspects of hydrology so that their knowledge can be used for watershed management practices for the proper use of water resource available in a basin.

EVS 3036	Natural Resource Management and Sustainable Development	Natural resources represent a potentially transformational opportunity to support development, but they are ultimately finite. So, by this course attempts have been made to teach the students about the complex and interwoven aspects of natural resources and to make the learners committed to harnessing the transformational impacts of the natural resource with sustainability aspects.
EVS 3043	Environmental Hazards and their Mitigation (Group A : Elective I)	Indian subcontinent, especially the N.E region is highly exposed to natural l hazards like earthquake, floods, droughts, landslides, soil erosion, cyclones etc. and so the students should be educated with the in-depth knowledge about these hazards and their mitigation measures.
EVS 3053	Disaster Risk Reduction and Management (Group A : Elective II)	The Course will enable the students to prepare distaster management plan, generate risk maps using qualitative and quantitative methods, mitigate hazard impacts, develop and implement policies and effective corporate governance related to the disaster. It also provides guidance on effective communication, co-ordination, collaboration and co-operation in performing roles and responsibilities in times of disaster in order to build community resilience and ensure that impacts are minimized by an efficient and effective disaster response.
EVS 3063	Industrial Pollution Control and Waste Management (Group B :Elective I)	The aim of the course is to produce competent professionals with a strong foundation of industrial pollution control and waste management processes and applications to be suitable for critical situations.
EVS 3073	Municipal Water supply and Wastewater Treatment (Group B:Elective II)	Human health is directly related to the drinking water quality especially in the urban municipal areas because of various environmental pollution aspects. So, students can learn the sources, causes and consequences of water used in different municipal areas and the water born diseases suffered by the citizens. Hence the present course has been formulated so that it can provide the basic knowledge of the municipal water supply scenario and waste water treatment processes in different municipal areas.
EVS 3082	Practical – V: Environmental Biotechnology and Microbiology	Students will get hands-on training on the environmental aspects of biotechnology and microbiology.
EVS 3092	Practical – VI: Eco- hydrology and Watershed Management	Students will get hands-on training on the eco-hydrology and watershed management.

EVS 3102	Project Seminar	Students would get an exposure in the selection of project works in the project seminar. The purpose is to produce skilled, up to date, competent and adequately accomplished researchers capable of taking research work independently
Fourth Ser	nester	
EVS 4013	Environmental Impact Assessment	The students will acquire knowledge on Environmental Impact Assessment, the nexus between environment and development, methods of impacts analysis, Air, Water, Soil, Noise and Energy impact analysis etc. and this will make students more skillful to solve problems.
EVS 4023	Environmental Law and Management	The knowledge of the legal, administrative and constitutional provisions for environmental protection in India and their implementation and shortcomings is essential to the students pursuing Environmental Science. So, the course has been incorporated.
EVS 4033	Climate Change and Global Environment	It is an open/In-house course, so emphasis has been given to impart knowledge on climate change, weather, climate change and global warming, climate change vulnerability, adaptation etc. common for all. It will also give ideas of national and international response on climate change scenario.
EVS 4043	Seismology and Seismic Hazards in NE India (Group A: Elective- III)	N.E part of India is very much prone to seismic hazards. So, the students should know about the different aspects of seismology and seismic hazards its magnitudes and waves, recording, zonation and hazard analysis and their mitigation measures. The aim of the course is to generate skilled manpower to be deployed in the study of seismology and this management in N.E.India. Hence the course has been incorporated.
EVS 4053	Flood Hydrology and Flood Hazards in NE India (Group A: Elective – IV)	N.E region of India, especially Assam is very much prone to floods. It is a regular phenomenon in the state of Assam. So, different components of floods, its control methods, flood forecasting and analysis, flow modelling, rehabilitation and quick response etc. are the need of the time,. Hence the course has been incorporated in the programme and it will definitely help the students.
EVS 4063	Solid and Hazardous Waste Management (Group B: Elective- III)	Solid waste management has become a subject of everyday discussion all over the world. India is of no exception. Assam is also facing the same problem. Hence to make aware of the grave situation of solid waste and their scientific management, the course has been framed. It will give some knowledge about the gravity to the problems and their probable solutions.

EVS 4073	Green Chemistry (Group B: Elective – IV)	To meet the demands of modern civilization, we need varieties of chemical products and chemical industries that lead to formation of hazardous substances injurious to the environment. Green chemistry aims to protect the environment and is known as Environmentally benign chemistry. It designs the chemical processes and products that reduce the use and formation of hazardous substances. So, this course is incorporated.
EVS 4083	Project	The purpose is to produce skilled, up to date, competent and adequately accomplished researchers capable of taking research work independently. It will also develop scientific communication skill useful for publishing research findings.

DETAILED SYLLABUS

FIRST SEMESTER

(15 weeks, 90 working days) Average contact hours per week = 28 hours

EVS 1013: Man, Environment and Environmental Issues

45 classes 3 credits Total marks: 50 Lect. Contents Unit Unit-I: Concept, scope and interdisciplinary nature of Environmental 7 Introduction Science: Environmental factors: The Global environment and its segments; Structure and composition of atmosphere, hydrosphere, lithosphere and biosphere; Mass and energy transfer across the interfaces of various geospheres; environmental ethics Unit-II: 7 Weather and climate, environmental significance, measurement of Weather and Climate weather parameters, variations in weather parameters, data analysis and interpretation, Extreme weather conditions; Climatic controls, Major climatic zones of the world: Climate, vegetation and human culture; Climatic extremes environmental implications, Global climate change and its impact on environment Different kinds of landscapes, General relationship between 5 Unit-III: landscape, biomes and climate. Climate, flora and fauna of different Landscapes and Environment kinds of landscapes – Mountain, valley and desert environment. Unit-IV: Man-environment relationship, Resource utilization and human 6 Man and impact on environment, Concept of sustainable development Environment Population growth - biological growth curves and carrying capacity, Human population growth and environmental constrains, Effects of environment on human culture and livelihood; Human impact on ecosystems; the Gaia hypothesis Unit-V: Different kinds of resources - Air, Water, Soil, Minerals, Forests and 6 Natural Resources Energy resources; Concept of reserve and resources; Equitable uses of resources, Problems with the exploitation of resources, environmental constrains Vegetation/forest classification -Champion & Seth's classification of Indian vegetation. Major vegetation types of Indian - structure, composition and function; Floral diversity and botanical regions of

	India.	
Unit-VI: Major Environmental Issues and Environmental movements	Green House effect and Global warming, Ozone layer depletion, Acid rain, Deforestation and loss of bio-diversity Climate change and adaptability - Climatic variability and climate change Concept of Eco Feminism, Role of eminent environmentalist in in Environmental movements of India, Chipko movement, Apikko movement, Narmada Bachao Andolan, Tehri Dam conflict; Save Ganga movement: Mega Dams in NE India and its Consequences	7
Unit-VII: Environmental Risk and Hazards	Risk and hazards; Chemical hazards, Physical hazards, Biological hazards, Basics of hazard management and mitigation	7

- 1. Daniel D. Chiras (2010): Environmental Science, eight editions, Jones & Bartlett,
- 2. G. M. Masters (2004): Introduction to Environmental Science and Engineering (2nd Ed.), Pearson Education Pvt. Ltd.
- 3. S. C. Santra (2011): Environmental Science, New Central Book Agency
- 4. Michael Allaby(2000): Basics of Environmental Science (2nd Ed.), Taylor & Francis
- 5. A. R. W. Jackson and J. M. Jackson (1998): Environmental Science The natural environment and human impact, Longman
- 6. Jr. G. T. Miller (1997): Environmental Science (6thed), Wadsworth Pub. Co.

EVS 1023: Environmental Biology

45 c	lasses3 creditsTotal marks: 50	
Unit	Contents	Lect.
Unit-I: Introduction	Concept of Environmental Biology, Ecosphere and Biosphere; Ecological factors and variables Ecosystems – concept, types, structural and functional aspects; Energy flow in ecosystems, food chain, food web, trophic levels, Ecological pyramids – pyramids of numbers, pyramids of biomass, pyramids of energy Hydrologic cycle, Evolution of Biosphere, origin and speciation of life	7
Unit-II: Biomes and Habitat	Classification of biomes – Tundra, Taiga, Grassland, Desert, Evergreen and deciduous forests, Tropical rain forests and their characteristics, Classification of Aquatic Habitats – Fresh water and marine (Wetlands, Rivers, Inter-tidal Estuaries; Mangroves)- their characteristics.	7
Unit-III: Community Ecology	Definition and concept of community, community diversity, structure, dominance, stratification and periodicity; Community interdependence, Ecotone, Edge effect and Ecological Niche Ecological succession – characteristics, types of succession, concept of	6

	climax, significance of succession	
Unit-IV: Air Microflora	Microflora of atmosphere – different sampling techniques, identification of aeroallergens; Airborne diseases and allergies; Microbes and pollution abetment	7
Unit-V: Environmental Biophysics	Introduction, Bioenergetics – Principle of thermodynamics, First and Second law of thermodynamics, entropy and enthalpy changes; ATP Bioenergetics - ATP formation and breakdown in living system; Photobiology – UV, Visible and IR radiations, their biomedical uses; Photosynthesis; Bioluminescence	6
Unit-VI: Environmental Biochemistry	Proteins – Biological important proteins, biological functions of proteins; Nucleic acids – DNA, RNA, and their types, biological functions of nucleic acids	6
Unit-VII: Human Ecology	Principles and scope of Human Ecology; Ecology and Human settlement, Relationship of human-being with other organisms – Positive interactions; Negative interactions	6

- 1. Eugene Odum(2004): Fundamentals of Ecology
- 2. S. C. Santra (2011): Environmental Science, New Central Book Agency
- 3. A. C. Dutta (2000): A Class-book of Botany; Oxford University Press, Calcutta
- 4. S. S. Purohit (2006): Microbiology Fundamentals and Applications (7thed), Agrobios
- 5. Hans Peter Schmauder (ed) (1997) : Methods in Biotechnology, Tailor & Francis

EVS 1033: Environmental Chemistry

45 classes

3 credits

Unit	Contents	Lect.
Unit-I: Environmental Chemistry Basics	Concept and scope of Environmental Chemistry; acid-base reactions, pH and pOH, ionic product of water, common ion effect, buffer solutions, solubility and solubility product, hydrolysis, chemical equilibrium, oxidation and reduction, chemical speciation, Chemistry of Environmental Trace Elements: Pb, As, Hg and Cd; concept of green chemistry Simple reaction mechanisms; Order and molecularity of chemical reactions; First, second and zero order reactions; Catalysis; Adsorption	7
Unit-II: Atmospheric Chemistry	Chemical composition of the atmosphere; Chemical and photochemical reactions in the atmosphere - formation of smog, PAN, acid rain; oxygen and ozone chemistry; Catalytic decomposition process of ozone, Concept of atmospheric aerosol chemistry	6
Unit-III: Water Chemistry	Physical and chemical properties of terrestrial and marine water and their environmental significance; Water quality parameters – physical, chemical and biological; Distribution of chemical species in water;	6

	Gases, organic matter and humic matter in water.	
Unit-IV: Soil Chemistry	Chemical & mineralogical composition of soil; Physical properties of soil – texture, bulk density, permeability; Chemical properties – cation exchange capacity, pH, macro- and micro-nutrients, major soil chemical reactions	6
Unit-V: Bio-geo-chemistry	Earth as a biogeochemical system, biogeochemical cycles – C, N, O, P, S cycles, basic thermodynamics; stable isotope studies of biogeochemical phenomenon; biogeochemical reactions in the atmosphere; Biogeochemistry of Wetlands and Lakes	7
Unit-VI: Chemistry of Cleaning Agents & Fuels	Soap, detergents and bleaching agents; Chemistry of colloids. Gasoline and additives, antiknock compounds, lubricants and greases, biogas	6
Unit-VII: Organic compounds	Hydrocarbons, PAH, PCBs, phenols, chlorofluorocarbons, pesticides, chemical fertilizers	7

- 1. S. E. Manahan (2005) : Environmental Chemistry (8thed), CRC Press
- 2. B.K. Sharma (2007): Environmental Chemistry, Goel Publishing House, Meerut, India
- 3. James E. Girard (2013): Principles of Environmental Chemistry, Jones & Bartlett
- 4. V. Subramanian (2011): A Textbook of Environmental Chemistry, I.K. Intl. Pub. House Pvt. Ltd
- 5. J. W. Moore and E. A. Moore (2012): Environmental Chemistry, Academic Press
- 6. G. W. Vantoon& S. J. Duffy (2017): Environmental Chemistry A global perspective, Oxford Univ. Press

EVS 1043: Environmental Soil Science

45 classes	
------------	--

3 credits

Unit	Contents	Lect.
Unit-I: Introduction	Soil as Medium for plant growth, Regulator of water supplies, Recycler of raw materials, Habitat for soil organisms; Soil Profile and its layers (Horizons); Constituents of soils, Soil water, Soil air; Soil quality, Degradation and resilience of soil	6
Unit-II: Soil formation and classification	Weathering of rocks - physical, chemical and biological; Factors influencing soil formation, Parent & residual parent materials Concept of individual soils, Comprehensive classification - categories and nomenclature of soil, Soil orders	6
Unit-III: Chemical properties of Soil	Acidity of soil - acidification of soil, sources of hydrogen and hydroxide ions, classification of soil acidity, variability in soil pH, effects of soil acidity on plants reduction of soil acidity; Acidification of ecosystems, Environmental effects, Alkalinity of soil - sources, measurement of salinity and alkalinity, Salt- affected soils, Reclamation of saline soils Soil Colloids – types, genesis, sources of charges; Colloidal control of	7

	soil reaction	
Unit-IV: Physical properties of Soil	Particle size distribution, Soil structure, Soil density and porosity, Soil consistence, Thermal properties of soils - absorption and loss of solar energy, Soil temperature, Processes affected by soil temperature, Soil temperature control	6
Unit-V: Air and Water in Soil	Nature of soil aeration, Soil aeration in field, Factors affecting soil aeration, Ecological effects of soil aeration, Aeration in relation to soil and plant management; Capillary fundamentals and soil water, Soil water energy concepts, Soil moisture content and water potential, Flow of water in soil, Factors affecting amount of plant-available soil water, Mechanisms of water supplied to plants.	7
Unit-VI: Land degradation and soil conservation	Degradation of land, Causes of land degradation – overexploitation, pollution, erosion, Nature of erosion, erosion by water, erosion by wind, Environmental problems due to erosion, Soil conservation	6
Unit-VII: Impact of Human activity on soil Quality	Soil health - concept, effects of intensified agriculture, sustaining biological productivity, improving Low-Yielding agricultural systems Soil pollution - Toxic chemicals, pesticides; Behavior of chemicals in soil, Effects of pesticides on soil organisms, Pesticide leaching, Potential hazards of chemicals in sewage sludge, Remediation of contaminated soils	7

- 1. Kim H. Tan (2009): Environmental Soil Science (Third Edition); CRC Press
- 2. Alan Wild (1996): Soils and the environment; Cambridge University Press
- 3. Donald Sparks (2002): Environmental Soil Chemistry, 2nd Edition; Academic Press
- 4. Gary M. Pierzynski, George F. Vance, J. Thomas Sims (2005): Soils and Environmental Quality; CRC Press
- 5. Nyle C. Brady and Ray R. Weil (2016): Nature and properties of soil, Pearson.

EVS 1053: Environmental Earth Science

45 classes	3 credits Total marks: 50	
Unit	Contents	Lect
Unit-I: Introduction	Concept of origin and evolution of the earth, Plate tectonics, Sea floor spreading and Continental drift; Seismic zones and volcanic belts. Rock types – igneous, metamorphic and sedimentary; Rock cycle; Soil - formation, composition, and classification; Soil profile, Mineral deposits – formation and classification; Different types of mining; Environmental problems associated with extraction of mineral deposits	6
Unit-II: Earth's Surface Processes	Mass-wasting; Erosion, Transportation and deposition of earth's materials by running water, wind and glaciers; Development of landforms; Soil erosion – causes and consequences; Gully formation, Bank-side erosion; Control and management of erosion	6

Unit-III: Atmospheric Processes	Global distribution of solar energy, Heat balance of the earth- atmosphere system, Earth as a heat engine; General circulation and wind systems; Cyclones and anticyclones; Air masses - source, modification and classification; Fronts and weather systems; Monsoons, <i>El-Nino, La-Nina</i> , ENSO	7
Unit-IV: Fundamentals of Meteorology	Atmospheric thermodynamics – equation of state of dry and moist air, specific heats and application of laws of thermodynamics, thermodynamic process; Temperature lapse rate and inversion; Hydrostatic balance and atmospheric stability; Scales in meteorology. Planetary boundary layer – variation of air temperature, humidity and wind; Diffusion and Turbulence, Mixing height	6
Unit- V: Climate classification and climate of different land-use	Determining factors of climate, Effects of topography, Classification of climate - Koppen classification, Thornthwaite's classification; Climate of India, Indian climate change scenario (Temperature and Precipitation trends, Extreme rainfall events, Heat wave and cold wave), Monsoon behavior. Urban climatology, Agro-climatic classification, weather forecasting, Role of weather on pest and disease outbreak	8
Unit-VI: Earth's Geodynamic Processes	Concept of stress and strain; Mechanics and classification of folds and faults; Recognition and genesis of minor structural elements - foliation, lineation, drag folds, cleavage and joints; Formation of tectonic earthquakes; Environmental changes due to Earthquakes, Volcanoes and <i>Tsunami</i> .	7
Unit-VII: Glaciers	Physical and chemical aspects, Mass balance, Recession of Himalayan glaciers, Glaciers as index of climate change.	5

- 1. Keller (2012): Introduction to Environmental Geology, 5th Edition; Pearson
- 2. K. S. Valdiya (1987):Environmental Geology; Tata McGraw-Hill
- 3. J. M. Wallace and P. V. Hobbs (1977): Atmospheric Science An introductory survey; Academic Press
- 4. H. R. Byers(1974): General Meteorology; McGraw-Hill
- 5. S. Pal Arya (1988): Introduction to Micrometeorology; Academic Press
- 6. T. R. Oke (1978): Boundary layer climates; Methuen & Co. Ltd
- 7. J. Bahadur (2004): Himalayan Snow and Glaciers Associated Environmental problems, Progress and Prospect, Concept Pub

45 classes	3 credits Total marks: 50	
Unit	Contents	Lect
Unit-I:	Sampling of Air, Water and Soil; Sampling equipments; Preparation of	7
Sampling and	sample for trace metal analysis in water air and soil: Dissolution	
Sample preparation	techniques and microwave digestion	
Unit-II:	Physiochemical parameters – Definition and determination of	6
Methods for water	Conductivity, pH, DO, BOD, COD; Measuring instruments used for	
and soil analysis	determination of Physiochemical parameters	
Unit-III:	Colorimetry and Spectrophotometry – theory and instrumentation;	7
Analysis of Metal	Theory, instrumentation and application of Atomic Absorption	
Ions	Spectrometry, Flame Emission Spectrometry and Inductively Coupled	
	Plasma Mass Emission Spectrometry	
Unit-IV:	Principle and process of solvent extraction, Extraction reagents and	6
Separation	Practical applications; Chromatography – principle and application of	
Techniques	thin layer and ion exchange chromatography	
Unit-V:	General discussion, Instruments for nephelometry and turbidimetry and	6
Nephelometry and	their applications	
Turbidimetry		
Unit-VI:	Principle, instrumentation and applications of Gas Chromatography	6
GC and HPLC	and High Performance Liquid Chromatography	
Unit-VII:	Principle and application of Ion-chromatography, GC-MS, Anode	7
IC,GC-MS, ASV and	Stripping Voltametry and Neutron activation analysis	
NAA		

EVS 1063: Analytical Methods for Environmental Monitoring

Recommended Books

- 1. Rafi Ahmad, Frank Taylor, Michael Cartwright (2001): Analytical Methods for Environmental Monitoring, Prentice Hall
- 2. Roger N. Reeve (2002): Introduction to Environmental Analysis, John Willy & Sons
- 3. Mahmood Barbooti (2015): Environmental Applications of Instrumental Chemical Analysis, CRC press
- 4. A. E. Greenberg, A. D. Eaton; APHA, AWWA, WEF: Standard Methods for Examination of water and waste water
- 5. C. N. Sawyer, P. L. McCarty and G. F. Parkin: Chemistry for Environmental Engineering and Science :
- 6. H. H. Rupa and H. Krist; Laboratory Manual for the Examination of Water, Waste water and soil; V C H Publication

EVS 1072: Practical – I: Environmental Biology & Geosciences2 credits Total marks: 40 (a) Experiment related to Environmental Biology

- 1. Estimation of Grassland and Forest animal population (seen) by quadrate method
- 2. Vegetation studies by line and belt transact method and their analysis

- 3. Study of wetland flora and fauna and the status study or Visit to aquatic ecosystem and collection of water and plankton samples for quality and productivity studies
- 4. Study of Pond productivity by quadrate and plankton study

(b) Experiment related to Geosciences (any six)

- 1. Familiarization with meteorological instruments and their uses and experiment related to presentation and interpretation relating to upper air and surface weather conditions including coding and decoding of meteorological parameters
- 2. Use of survey instruments theodolite, dumpy level, plane table and digital laser tacheometer.
- 3. Studies of thin sections of selective igneous, metamorphic and igneous rocks
- 4. Classification of soils using soil taxonomy
- 5. Determination of lime requirement of an acidic soil by buffer method
- 6. Determination of gypsum requirement of an alkali soil
- 7. Determination of organic matter content and calcium carbonate content in soil
- 8. Humus study by visible spectrophotometric studies and the (E4/E6) values at two pH values

EVS 1082: Practical –II: Environmental Chemistry and Instrumental Analysis

2 credits Total marks: 40

- 1. Experiments related to physicochemical properties of water (pH, EC, Free CO₂, Bicarbonate, Alkalinity, TDS etc.)
- 2. Estimation of turbidity in water and soil using spectrophotometer
- 3. Estimation of halides in water samples (Cl⁻)
- 4. Estimation of alkali metals in water/soil samples by flame-photometry
- 5. Analysis of soil for Organic Carbon, total and available plant nutrients
- 6. Identification and quantification of minerals in soil fractions

EVS 1092: Field Study (1 week duration)2 creditsTotal marks: 20

SECOND SEMESTER

(15 weeks, 90 working days) Average contact hours per week = 28 hours

EVS 2013: Environmental Statistics and Data Analysis

45 classes	3 credits To	otal marks: 50	
Unit	Contents		Lect
Unit-I:	Environmental Variables, Environmental data	collection and	17
Introduction	presentations; Basic Statistics - frequency distribution	on, Measures of	Ē
	Central Tendency and Dispersion, Moments, Skewne	ss and Kurtosis	,
	Outliers and Robustness		
	Population, sample and census, Different technique	es of sampling -	-
	simple random sampling, stratified random sample	ling, systematic	;
	sampling; Relative advantages and disadvantages of diff	ferent techniques	5

Unit-II:	Basic probability rules, expectation, conditional probability;	7
Probability	Probability distributions – Binomial, Poisson, Normal and Log-normal	
Distributions	distributions; Fitting of probability distributions to environmental data.	
Unit-III:	Bi-variate and Multivariate data, Scatter diagram and simple	7
Bi-variate and	correlation, Multiple and partial correlations, Regression analysis,	
Multivariate data	Fitting of mathematical curves.	
analysis	Factor analysis, Principal component analysis,	
Unit-IV:	Parameter and statistics; Sampling distribution, Standard error and	7
Sampling distribution	its uses; Concept of t- distribution, F-distributions, Chi Square	
and Test of	distribution without derivation and their applications; Null hypothesis	
Significance	and uses of t- test, F-test, X^2 -tests; Test of significance of large samples	
Unit-V:	Different types of models used in AOV; Basic assumptions and its	6
Analysis of Variance	violation; One and two way classified data; Application of AOV to	
	environmental data	
Unit-VI:	Definition and classification of Attributes, Contingency Table,	5
Theory of Attributes	Independence of attributes, Yule's coefficient of association and its	
-	properties	
Unit-VII:	Components of time series, Models, measurement of trend, seasonal	6
Time series analysis	movements, cyclical movements	

- 1. Wayne R. Ott (1994): Environmental Statistics and Data Analysis, Lewis Publishers
- 2. Vic Barnett (2005): Environmental Statistics: Methods and Applications, John Wiley & Sons Ltd.
- 3. S. C. Gupta and V. K. Kapoor (2007): Fundamentals of Mathematical Statistics; S. Chand & Co.
- 4. Aslam Mahmood (1998): Statistical Methods in Geographical Studies; Rajesh Publications, New Delhi
- 5. J.Medhi (1992): Statistical Methods : An Introductory Text : New Age International Ltd. Publishers

EVS 2023: Environmental Remote Sensing and GIS Applications
45 classesTotal marks: 50

Unit	Contents	Lect
Unit-I:	Concepts and physics of remote sensing, effects of atmosphere, Principle	7
Introduction	of scanner and CCD array, Spectral reflectance of earth's surface features;	
	spectral characteristics of surface features (rocks, soils, vegetations,	
	water); Applications of Remote Sensing in environmental monitoring.	
Unit-II:	Basic principles, Radiation laws, Sensing radiant energy, Thermal sensors,	6
Thermal remote	characteristics of image and their uses.	
sensing		
Unit-III:	Basic definitions and principles, RADAR, SLAR, SAR; General	7
Microwave remote	characteristics, spectral resolution and interpretation.	
sensing		

Unit-IV: Areal Photography and Digital Image Processing	Fundamentals of photogrammetry, areal cameras, planning of areal photography, principle of stereo-photography, parallax and measurement of height & slope, Elements of image interpretation, convergence and evidence, interpretation keys; Interpretation of photographs and images for environmental analysis Principles, Image rectification, Image enhancement and mosaicing. Image classification; Ground truth data and training set manipulation,	7
Unit- V:Geographical Information System (GIS)	Basic principles, Raster and vector data, Map projection, Topology creation, Overlay analysis, Data structure and Digital cartography	6
Unit-VI: Land Surveying Techniques	Elementary ideas regarding land surveying and leveling; Principle and uses of Plane Table, Dumpy level, Theodolite and Total station; Global Positioning System (GPS) - Basic principles, Applications to environmental studies	6
Unit-VII: Integration of Remote Sensing data with GIS technology	Methods of Spatial Data Input- Keyboard entry, Digitizing, Electronic data transfer; Entering Non-Spatial Data; Errors in GIS Database; GIS data management system (DBMS)	6

- 1. J. R. Jensen (2007): Remote Sensing of the Environment An earth resource perspective; Pearson Education
- 2. Martin (2003): Geographic Information Systems; Routledge
- 3. Heywood (2010): An Introduction to GIS; Pearson
- 4. Yadav (1997): Remote S sensing in Land Evaluation; Rajesh Pub
- 5. Essentials of GPS (2004): N. K. Agarwal; Spatial Networks Pvt. Ltd., Hyderabad

EVS 2033: Environmental Pollution – Monitoring and Control Technologies

45 cl	asses 3 credits Total marks: 50	
Unit	Contents	Lect
Unit-I:	Definition and sources of pollution; Different types of pollution and their	3
Introduction	global, regional and local aspects	
Unit-II: Air	Types and sources of air pollutants; Reactions of pollutants (smog, O_3 ,	8
Pollution	PAN, Acid rain); Atmospheric diffusion and stack performance; Transport of	
	pollutants, Dispersion models; Effects of air pollutants on flora and fauna;	
	Sinks of atmospheric gases: Firework pollution – composition/ingredients,	
	monitoring strategies, Effect of air pollution on human health. Air pollution	
	control technologies - Particulates filters, Scrubbers and electrostatic	
	precipitators; Vehicular Pollution and its control	
Unit-III: Water	Sources of water and their contamination; Types of pollutants, Sources of	7
Pollution	pollutants – domestic wastes, organic debris, agricultural wastes, pesticides;	
	Industrial effluents - pulp and paper mills, oil exploration and refinery,	

	petrochemicals, iron and steel industries; Eutrophication – causes and effects	
	and control measures. Effect of water pollution on human health.	
Unit-IV: Soil	Causes of soil pollution; Types of pesticides; Effects of pesticides on soil	7
pollution	components and soil organisms; residual toxicity and pollution. Different	
	kinds of synthetic fertilizer (N, P, K) - their toxicity and interactions with	
	different components of soil.	
Unit-V:	Radiation Pollution :Radioactive decay; Interaction of radiation with	7
Radiation	matter; Biological impact and health hazards associated with radiation, Units	
Pollution	of radioactivity and radiation dose; Protection against ionizing isotopes and	
	their applications in waste water and air pollution analysis and treatment;	
	Radioactive waste disposal.	
Unit-VI: Noise	Noise Pollution :Basic properties of sound waves – plane and spherical	7
Pollution	waves, sound pressure, loudness and intensity levels, decibel; Sources of	
	Noise Pollution –Measurement and analysis of sound, Effects of Noise	
	pollution on Human health; Measures to control noise pollution - Absorbing	
	materials, barrier materials, damping materials, acoustical enclosures,	
	Reactive silencers and filters; Active noise control methods.	
Unit-VII:	Thermal pollution: Definition and sources, Chemical and biological effects	6
Thermal and Oil	of thermal pollution, Effect on marine life, bacteria and water quality and	
pollution	other aquatic biota; Thermal pollution from power plants and their control.	
1	Oil pollution and marine ecology, sources of oil pollution, factors effecting	
	fate of oil after spillage, spreading, evaporation, emulsification, dispersion,	
	remote sensing in water quality monitoring.	

- 1. Marquita K. Hill (2004): Understanding Environmental Pollution: A Primer; Cambridge University Press
- 2. P AarneVesilindJ. Jeffrey PeirceRuth F. Weiner (1990): Environmental Pollution and Control, 8th Edition; Butterworth-Heinemann
- 3. H. Koren (1980): Handbook of Environmental Health and Safety principle and practices (Vol. I & II); Lewis Publishers
- C.S. Rao (2018):Environmental Pollution Control Engineering; 3rd Edition; New Age International
- 5. Environmental Chemistry : B.K. Sharma, and H. Kaur

EVS 2043: Ecosystem Dynamics, Biodiversity and Conservation Biology 45 classes 3 credits Total marks: 50

Unit	Contents	Lect
Unit-I:	Dynamic nature of ecosystems, Ecosystem services, Exploitation of	6
Human impact	ecosystem services, Human impact on forest ecosystem, grassland and aquatic	
and Ecosystems	ecosystems and their environmental consequences; Degradation and	
sustainability	Sustainability of ecosystems, Management of ecosystems – forest, grassland	
	and aquatic.	

Unit-II:	Population growth - growth curves, life curves, age structure, function	7
Population growth	and equilibrium: Population regulation – biotic potential and environmental	,
and regulation	resistances: Factors of population regulation – density dependent and	
	density independent:	
	Concept of limiting factors. Laws of limiting factors – laws of	
	minimum and tolerance: Combined concept of limiting factors. Earth's	
	carrying capacity: Neutralism symbiosis commensalism mutualism	
	antagonism antibiosis parasitism predatism. Competition – intra-specific	
	and inter-specific.	
Unit-III:	Human population growth – global and regional: Changes in life	7
Human population	expectancy: Problems of population growth. Controlling of human	
growth and	population growth	
environmental	Human food requirements. Food production - Green Revolution and its	
issues	environmental significance (Food chain losses: effects of pesticides on non-	
155405	target organisms, effects on predator, pollution)	
Unit-IV:	Concept, definitions and values of biodiversity. Various components of	7
Biodiversity &	Biodiversity value (Total Economic Value etc) Genetic species and	,
Biogeography	ecosystem diversity. Values of bio-resources - social ethical and aesthetic:	
Diogeography	Bio diversity hot spots Bio-geographical concepts dispersal and faunal	
	exchange harriers mode of dispersal origins and radiation. Applied	
	biogeography - biogeographical process endemism refugium: bio-	
	geographical realms and provinces Phyto-geographical regions of world	
	Phyto-geographical regions of India: Origin of India's flora & fauna and	
	routes of found exchange & migration	
Unit V.	Biodiversity et global regional and local levels Monitoring &	6
Threats to	measurement of biodiversity: useful indices. Threats like overexploitation	0
Riodiversity	fragmentation habitat loss posching of wildlife man wildlife conflicts	
Diodiversity	nagmentation, habitat loss, poaching of whether, man-whether commets,	
	avalution	
Unit VI.	Endengered and endemic species: Threatened species: Cetegories of	6
Conservation of	Liuangereu and endenne species, finicatened species, Categories of	0
Wild Flore and	data books: Stratagies for conservation. Global agreements and national	
Found	concerns. PAMSAP sites CPD Querentine regulations. National forest	
Taulla	concerns, KAWSAK sites, CDD, Quarantine regulations, National forest	
	policy, Blourversity act., while-life protection act of hidia, Conservation of	
	national parks and sanctuaries, Plant conservation issues and strategies	6
	Concept and practice; Importance of Conservation; Keystone species,	0
<i>In-Situ</i> and <i>Ex-</i>	Umbrella species and Flagsnip species; <i>in-situ</i> and <i>ex-situ</i> conservation,	
situ Conservation	Protected areas –its classification and characteristics (wildlife sanctuaries,	
	National Parks, Biosphere reserves, Zoo etc); Conservation of plant	
	diversity in seed banks, gene banks or germplasm reserves,	
	cryopreservation; Projects related to conservation of different wild life	
	species (Project Tiger, Project Rhino etc), Marine protected areas	

Recommended Books
1. W. S. C. Gurney and R. M. Nisbet (1998): Ecological Dynamics, Oxford University Press

2. F. Jopp, H. Reuter, B. Breckling (2011): Modelling Complex Ecological Dynamics - An Introduction into Ecological Modelling, Springer

- 3. Krishnamurthy (2004): An advanced textbook on Biodiversity: Principles and Practice, Oxford & IHB Publishing Co.
- 4. K. V. Krishnamurthy (2017): Textbook of Biodiversity, CRC Press LLC
- 5. Fred Van Dyke (2008): Conservation Biology: Foundations, Concepts, Applications. Springer
- 6. Navjot S. Sodhi, Paul R. Ehrlich (2010): Conservation Biology for All. Oxford Univ. Press
- 7. Martha J. Groom, Gary K. Meffe and C. Ronald Carroll (2012): Principles of Conservation Biology, Sinauer

EVS 2053: Environmental Health and Eco-toxicology 45 classes 3 credits

Unit-I: Overview of Environmental Health and Diseases	Concept and scope; Global and regional perspectives; Basic requirements for healthy environment; Environmental quality, human exposure and health impact – impact of environmental factors on human health. Environmental Diseases – Asbastosis, Silicosis, Asthma, Fluorosis and Arsenocosis	6
Unit-II: Industrial Pollution and Chemical Safety	Extent of industrial pollution, Public exposure from industrial sources, Hazards by industry, Major chemical contaminants at workplace, Industrial environmental accidents	6
Unit-III: Occupational Safety and Health	The relationship of occupational hygiene/ safety and disease; Principles and methods of occupational health, Health problem due to industrial dust, heat, chemicals, noise, toxic gases and heavy metals, Health hazard in agriculture - Pesticides and environment, Pesticides and human health.	6
Unit-IV: Eco-toxicology and Toxicants	Introduction to ecotoxicology, Principles of toxicology, Types of toxic substances - degradable and non-degradable; Influence of different factors on the effects of toxicity, Exposure types, Exposure pattern, Dose, Interaction within chemicals Toxicants in the Environment, their sources and entry roots; Transport of toxicants by air and water; Environmental Fate Models, Transport through food chain - bio-accumulation and bio-magnification	7
Unit-V: Man and Environmental Toxins	Routes of toxicants to human body – entry through inhalation, skin absorption, indigestion and injection; Absorption and Translocation of Toxic agents, Fate of the Toxic agent after Absorption, Accumulation of the toxic agent in Biological systems, Response to toxin exposures –Dose response Curve; Lethal and sub-lethal doses; Dose-Response relationships between chemical and biological reactions. Analysis of NOEL, LD 50, LC 50 and MLD; Biotransformation of Toxic Agents-Stage I and Stage II Reactions, Detoxification in human body - detoxification mechanisms, organs of	7

	detoxification	
Unit-VI: Environment and Vector borne Diseases	Different kinds of Vectors, Habitat of vectors, Environmental parameters affecting growth and development of vectors, Control technique of vectors population; Vector borne diseases - Malaria, Kalaazar; Dengue, Japanese Encephalitis, Epidemiological issues	5
Unit-VII: Environmental Health Hazard and Risk Assessment	Hazard and risk, Biological, chemical, physical and psychological health hazard; Health risk assessment and management, Bioconcentration Factor, Numericals related to Chronic Daily Intake, Exposure Risk and Margin of Safety, Therapeutic Margin, Selective toxicity	5

- 1. D. W Moeller and D. W Moeller (2009): Environmental Health, (3rd Edition), Harvard University Press
- 2. Friis (2018): Essentials of Environmental Health, Jones & Bartlett Learning
- 3. H. Koren and M. S. Bisesi (2002): Handbook of Environmental Health, 4thEdn. (Vol. I & II), Taylor & Francis
- 4. I. C. Shaw and J. Chadwick (1998): Principles of Environmental Toxicology; Taylor& Francis ltd
- 5. Ming-Ho Yu, H. Tsunoda and M. Tsunoda (2016): Environmental Toxicology: Biological and Health Effects of Pollutants (3rdedn), CRC Press
- 6. L. G. Cockerham, B. S. Shane (1993): Basic Environmental Toxicology. CRC Press
- 7. Monroe T. Morgan and D. B. Barnett (2003): Environmental Health; Thomson/Wadsworth

45 classes	3 credits Total marks: 50	
Unit	Contents	Lect
		•
Unit-I:	Human energy requirement, Energy use pattern in different parts of	7
Introduction	the world and its impact on the environment; Energy use pattern in	
	India; Sources of energy and their classification; Energy forms and	
	transformation	
	Sun as source of energy: Source of sun's energy, Solar spectrum solar radiation – absorption, reflection, scattering and diffusion in the atmosphere, Albedo, Global energy balance	2
Unit-II:	Fossil fuels – classification, composition, physicochemica	17
Fossil Fuels	characteristics; Energy content of coal, petroleum and natura	1
	gas; Formation, reserves, exploration/ mining and uses of Coal, Oil and	1
	Natural gas; Environmental problems associated with	1
	exploration/mining, processing, transportation and uses	
Unit-III:	Biomass composition and types; Conversion processes – pyrolysis,	7

EVS 2063: Energy and Environment

Bio-energy	charcoal production, compression, gasification and liquefaction; Energy plantation; Biogas – production and uses, anaerobic digestion; Environmental constrains; Energy from solid Wastes - Sources, types, energy production	
Unit-IV:	Solar Energy - Harnessing of solar energy, Solar collectors and	7
Solar and Wind	concentrators, Solar thermal energy, Solar electricity generation, Solar	
Energy	heaters, dryers, and cookers; Photovoltaics	
	Wind Energy - Wind power, Harnessing of wind energy, Power	
	generation – wind mills, concentrators, wind characteristics and siting,	
	environmental considerations; Wind energy potential in India with	
	special reference to Northeast India	
Unit-V:	Fission and fusion, Nuclear fuels, - Mining and processing of	7
Nuclear energy	Uranium - concentration, refining, enrichment, fuel fabrication and	
	fuel cycle; Nuclear reactors and radioactive waste; Environmental	
	implications	
Unit-VI:	Principles of generation of hydroelectric power, hazard related to	5
Hydroelectricity	hydropower generation and distribution, environmental impact	
Unit-VII:	Sources – crust, high temperature aquifers, low temperature	5
Geothermal and	aquifers, reserves; Harnessing of geothermal energy – problems and	
Hydrothermal energy	prospect; Geothermal energy prospect in India	
	Hydrothermal energy; Tidal and wave energy, Problems and prospects	

- 1 R. Toossi (2009): Energy and the Environment: Sources, Technologies, and Impacts; VarVe Publishers
- 2 M. André and Z. Samaras (Ed) (2016): Energy and Environment, ISTE, Limited
- 3 V. C. Nelson (2011): Introduction to Renewable Energy, CRC Press
- 4 R. Ehrlich (2013): Renewable Energy: A First Course; CRC Press
- 5 D. Mukherjee (2004): Fundamentals of Renewable Energy Systems, New Age
- 6 S. K. Agarwal (2003): Nuclear Energy Principles, practice and prospects; APH Publishing Corporation
- 7 V S. Mahajan (2005): National Energy policy, crisis and growth; Ashis Publishing House

EVS 2072: Practical – III: Remote sensing &GIS

2 credits Total marks: 40

- 1. Numerical problems on the aerial photographs: Determination of photo scale; determination of number of Strips and total number of aerial, photographs; Preparation of photo index.
- 2. Stereo test; Orientation of stereopair under mirror stereoscope; Use of parallax bar and the determination of heights and slopes; Preparation of base map.
- 3. Interpretation of Satellite Imageries: Referencing and lay out of satellite images; Identification of objects/features on multi-band imageries and FCC; Interpretation of physical and cultural features from IRS imagery;
- 4. Experiments related to image processing

- 5. Pattern Recognition and Image Classification: Unsupervised classification; Training sets and supervised classification
- 6. Data Base Creation: Spatial data input and Geo-referencing; Spatial data base creation; Creation of non-spatial data sets into DBF format; Linking of Spatial data with non-Spatial data sets and map composition.
- 7. Spatial Analysis: GIS analysis: Proximity, Thematic mapping and Over lay; 3D Modelling: DEM, Slope and Aspect Overlay, buffer and proximity analysis; Output and report generation;
- 8. Global Positioning System: Demonstration on GPS; Selection of datum, units and scale; GPS measurement: Collection of GCPs; Mobile mapping; Transfer of GPS data into GIS software.

EVS 2082: Practical – IV: Pollution, Ecosystem & Toxicology

2 credits Total marks: 40

(a) Experiments based on Environmental pollution

- 1. Measurement of noise in silent, industrial, residential and commercial zones.
- 2. Determination of (i) SPM in ambient air by high volume sampler and their analysis
- 3. Determination of DO, BOD and COD
- 4. Analysis of SO₂, NO_X, by wet chemistry method
- 5. Estimations of fluorides and iron in ground water
- 6. Extraction of heavy metals from biological materials

(b) Experiments based on Ecosystem dynamics

- 1. Forest ecosystem studies: vegetation mapping, estimation of primary production
- 2. Aquatic ecosystem: surveying and mapping, determination of some physico-chemical characteristics, studies related to aquatic microphytes, estimation of primary production and respiration of phytoplankton population, studies related to aquatic macrophytes
- 3. Grassland studies: estimation of frequency, density, bio-mass, coverage and important value index (IVI)

(c) Experiment related to Eco-toxicology (any four expt.)

- 1. Extraction and separation of organic compounds from biological materials Ammonium sulphate method (Nichols method), TCA method, Acid digestion method, Wet washing for metals, Steam distillation for volatiles
- 2. Experiments related to data reduction, data representation, cumulative and noncumulative dose response curves, transformation of data
- 3. Construction of a dose-response curve for the effect of a toxic substance (pesticide/insecticide) on the germination of seeds
- 4. Estimation of hazard quotient
- 5. Determination of Cancer Risk (CR) Assessment in a given population
- 6. Short term acute toxicity testing using fish species

EVS 2092: Practical – IV: Summer Internship/Field Work

(Minimum 10 days)

2 credits

THIRD SEMESTER

(15 weeks, 90 working days) Average contact hours per week = 28 hours

EVS 3013: Environmental Biotechnology and Microbiology 45 classes 3 credits

Unit	Contents	Lect.
Unit-I:	Introduction, concept and scope of environmental	6
Environmental	Biotechnology; concept of Genetic manipulation, restriction	
Biotechnology	endonuclease, introduction of cloned gene into new host using	
	plasmid and phase vector system; Polymerase Chain Reaction	
	(PCR); Recombinant DNA technology	
Unit-II:	Fundamentals of Microbiology, Classification of	7
Environmental	Microorganisms, Microbes in Terrestrial, aquatic & natural	
Microbiology	environment, Extreme environments; Types of Interaction:	
	Microbes-microbes, Interaction between micro-organisms and	
	plants, Plant- microbes, microbe-animal interaction, Role of	
	micro-organism in elemental cycles- the carbon cycle, nitrogen	
	cycle, sulfur cycle and phosphorus cycle	
Unit III:	Application of Environmental Biotechnology in pollution	6
Application of	abatement -microbial degradation of pesticides; Sewage	
Environmental	treatment using microbial system; - Bio-filtration, Bio-tickling	
Biotechnology	filtration; Microbes in oil pollution control.	
Unit-IV:	Bioremediation – Introduction to Bioremediation; advantages	6
Bioremediation and	and applications; types of Bioremediation: Natural (attenuation)	
Phytoremediation	; Ex-situ and In-situ; Bio-augmentation and bio-stimulation;	
	Bio-scrubbers ; Bio-venting; Bio-reactions; Role of microbes in	
	biodegradation	
Unit V:	Microbiology of waste water treatment- activated sludge	7
Microbes in Wastewater	processes; trickling filters; waste stabilization ponds; sludge	
Treatment	processing; Anaerobic digestion of waste water and Bio-solids;	
	Hydrolytic bacteria, Fermentative, acidogenic bacteria,	
	Methanogens; Factors controlling anaerobic digestions	
Unit VI:	Fermentation technology; Enzyme technology; Vermiculture;	6
Eco-friendly	Tissue culture; Biofuel Technology and biogas technology.	
technologies-		
Unit-VII:	Agricultural and food microbiology; Microbes in agriculture;	7
Agriculture and Food	Mycorrhiza, Nitrogen fixing microbes; microbes in rhizosphere	
microbiology	and Endosphere, Plant pathogens; Bio fertilizers; Bio pesticides.	
	Food microbiology- Microbes in food, food production and	
	food spoilage- fish and meat, food poisoning. Preservation of	
	food, Genetically modified crops (GMO) with special reference	
	to Bt cotton, Bt brinjal	

- 1. Microbiology by R.P Singh
- 2. Environmental microbiology by Maier, Pepper and Gerba
- 3. Microbiology-Fundamentals and application by S. S Purohit
- 4. Environmental and applied microbiology by K. C Agarwal
- 5. Hand book of environmental microbiology by S. C Bhatia
- 6. Hand book of Environmental Biotechnology by S. C Bhatia (Vol I, II, III)
- 7. Advances in Environmental Biotechnology by A. K Srivastav
- 8. Bio technology by Keshav Tehran

EVS 3023: Eco-hydrology and Watershed Management 45 classes 3 credits

Unit	Contents	Lect.
Unit-I:	Hydrologic cycle and hydrologic budget, Inventory of Earth's	5
Introduction	water, Global Water Balance; Drainage basin - characteristics,	
	Surface and subsurface environment; Stream classification and	
	ordering	
Unit-II:	Mechanism, forms and types of precipitation; measurement of	6
Precipitation	precipitation - rain gauge, radar, satellite; analysis; presentation	
	and interpretation of precipitation data - areal distribution,	
	temporal variation, estimation of areal average; Precipitation	
	characteristics in India – seasonality, areal distribution and trend;	
	precipitation characteristics of Northeast India	
Unit-III:	Different process of water abstraction in a basin; Evaporation and	7
Water Abstractions	evapo-transpiration - Mechanism, Factors affecting evaporation	
	and transpiration, Measurement of evaporation and evapo-	
	transpiration; estimation of evapo-transpiration; Infiltration and	
	percolation - Infiltration capacity of soil, Factors influencing	
	infiltration capacity, methods of determining infiltration capacity	
Unit-IV:	Factors affecting runoff – climatic & physiographic; stream flow	7
Runoff and Stream	measurement – stage and discharge, measuring instruments;	
flow	Stage-discharge relationship - rating curves and their	
	determination; Stream flow hydrograph – elements, analysis, flow	
	separation; Unit hydrograph – concept, assumption, construction,	
	limitations and uses	
Unit-V:	Definition - soil moisture, Water table, Aquifers; Geology of	6
Ground water	aquifers; Ground water flow; Abstraction of ground water;	
	Environmental influences on ground water - fluctuations due to	
	evapo-transpiration, fluctuations due to meteorological	
	phenomena, urbanization: Ground water recharging and rain	
	water harvesting	

Unit-VI:	Frequency analysis; Cyclical nature of hydrological phenomena	7
Hydrological	Watershed management-Concept, objectives, planning and	
forecasting and	measures; Land use planning for watershed management; Water	
Watershed	harvesting and recycling; flood control and watershed	
management	management; Socioeconomic aspects of watershed management	
Unit-VII:	Wetlands - definition and classification, Hydrologic regimes -	7
Wetland and Forest	reduction of flash flood, storage of water, role in ground water	
hydrology	recharge; Role of forests in ground water recharge, soil	
	conservation and flood moderation	

- 1. Elementary hydrology: V. P. Singh,
- 2. Hydrology Principles, analysis and design: H. M. Raghunath,
- 3. Elements of water resource engineering: K. N. Duggal and J. P. Soni,
- 4. Applied Hydrology: Chow
- 5. Integrated watershed management: Rajora
- 6. River Basin Morphology: Devi
- 7. Applied Hydrology-Murtreja
- 8. Engineering Hydrology: K. Subramanya
- 9. Elementary Engineering Hydrology: M. J. Deodhar
- 10. Engineering Hydrology-C.S.P. Ojha, R. Berndtsson and P. Bhuyan
- 11. Integrated Watershed Management: E. Beheim, G.S.Rajwar, M.J.Haigh and J. Krecek

EVS 3036: Natural Resource Management and Sustainable Development (Open/In-house)90 classes6 creditsTotal marks: 100

Unit	Contents	Lect
Unit-I:	Introduction to natural resources-Air, Water, Soil, Mineral resources,	12
Introduction	Forests and Energy resources; Classification of natural resources;	
	Concept of reserve and resources; Factors influencing resource	
	availability; Resource distribution-in India and NE India.	
Unit-II:	Brief about water resource management-Surface and Groundwater	15
Water resource	(Global, National and Regional perspectives); Water scarcity and the	
and its	related problems; Water conflicts-case studies; Different water	
management	management techniques-modern and traditional; Indigenous Water	
	management techniques in NE India (Dong, Zabo, Bamboo drip	
	irrigation); Interlinking of Rivers and their consequences	
Unit-III:	Use and exploitation of mineral resources; Environmental effects of	12
Mineral resource	extracting and using mineral resources-case studies; Resource	
and its	conflicts-resource extraction, access and control system; Approaches	
management	in resource management-ecological approach, economic approach	
	and ethnological approach; Integrated resource management	
	strategies; Mineral resources of NE India and the associated	
	environmental issues and management strategies.	
Unit-IV:	Forest types and their characteristics; Status and distribution of	13
Forest resource	forests-National and regional scenario; Timber extraction, mining,	

and its	dams and their effects on forest and indigenous people; Traditional	
management	and modern forest management strategies; Joint forest management	
Unit-V:	Concept and growth of the idea; Agenda 21; Millennium	13
Sustainable	Development Goals (MDG) &Sustainable Development Goals	
Development	(SDG); Indicators of sustainability; Models of sustainable	
_	development; Basic aspect of sustainability; Practices towards	
	sustainable development; Sustainable development scenario-Global	
	and national	
Unit-VI:	Evolution of Life Cycle Analysis (LCA); Technical framework for	12
Life Cycle	LCA; Life cycle design; Life cycle inventory and methodology-case	
Assessment	studies; Gadgil-Joshi Model;	
Unit-VII:	Concept and scope of livelihood; livelihood framework analysis;	13
Sustainable	Indigenous communities and traditional livelihood; Impacts of	
livelihood and	natural resource crisis on the livelihood of the people	
national resource		
management		

- 1. Sustainable natural resource management in North east India: K.C.Das, P.J.Das and S.Ojha
- 2. Dying Wisdom- A.Agarwal and S.Narain
- 3. Environmental management and Sustainable Agriculture: M.A.Khan
- 4. Environmental Conservation-promises and actions: A.Ghosh
- 5. River Water sharing-Transboundary conflict and cooperation in India: N.S.Mohan; S.Routray and N.Sashukumar
- 6. Integrated management of water resources with reference to biodiversity and livelihood: S.N.Dwivedi, P.Tamot and A.M.Yasin
- 7. Environmental Economics: N. Hanley, J.F.Shogram and B.White
- 8. Mining Geology: Arogyaswamy

EVS 3043: Environmental Hazards and their Mitigation (Elective-I)

45 classes	3 credits Total marks: 50	
Unit	Contents	Lect
Unit-I:	Definition - Hazard, vulnerability and risk; Natural and man	- 6
Environmental hazards&	made hazards, Strategies for mitigation – warning system	,
their mitigation	forecasting, Emergency Preparedness, Education and Training	5
	Activities, planning for Rescue and Relief works	
	Identification of hazard prone belts, Hazard zonation and Risl	K
	assessment, Developing warning system, Risk assessment and	1
	reduction in vulnerable areas.	
Unit-II:	Origin and severity of earthquakes, effects of earthquakes, risl	x 7
Seismic Hazards	evaluation, seismic hazards and its zonation in India, Coping with	ı
	seismic hazards;	
	Tsunami – their origin, nature and impact on coastal areas	;
	Tidal waves;	
Unit-III:	Definition - Floods, Floodplains and Flood-Prone Areas;	7

Flood hazard and its	Causes nature and frequency of flooding: urbanization and	
management	flooding: Flood Hazard Assassment environmental effects of	
management	flooding, Flood flazard Assessment - environmental effects of	
	flooding, Flood prone areas of India and associated nazards, flood	
	mitigation and management, Floods in NE India; Flood hazard	
	management in NE – Structural and Non-structural Measures	
Unit-IV:	Desertification and Drought – Causes of desertification;	6
Meteorological Hazards	Evaluation of desertification hazard – potential and zoning:	
	Drought -causes, types, distribution and management	
	Cyclones: Cyclones – their nature and genesis; Nor'westers;	
	Weather associated with cyclones;	
Unit – V	Slope instability and Landslide hazard: Causes - destabilizing	7
Landslide Hazards	forces; mass movement types; human use and landslides;	
	landslide hazard zonation, strength of materials and instability of	
	slopes, subsidence and swelling of ground, landslides in NE India	
Unit-VI:	Hazards due to dams and reservoirs, hazards due to nuclear	5
Man-made Hazards	power plant; Industrial hazards, Occupational hazards; Mitigation	
	measures for man-made hazards	
Unit-VII:	Observed climate variability and change- Evidences of	7
Climate Change and	warming and change in atmosphere/ ocean circulations; Climate	
Environmental hazards	extremes,-thunderstorms, Tornadoes, Heat waves, Rise of global	
	temperature, Rise of sea level, Melting of glaciers	

- 1. Floods A geographical perspective: R. Ward
- 2. Natural Hazards Local, National, Global: G. F. White
- 3. Handbook of Applied Hydrology: V.T. Chow
- 4. Satellite Remote Sensing Technology for Natural Hazards Preparedness and Emergency Response Planning: G. Morgan
- 5. Elementary seismology: C. F. Richter
- 6. Geodynamics of Northeastern India and the adjoining region: D. R. Nandy
- 7. Introduction to Seismology: P. M. Shearer
- 8. Principles of Seismology: A. Udias
- 9. Fundamentals of Geophysics: W. Lowrie
- 10. Environmental geo-hazards (Vol. I & II): K. K. Sharma, S. K. Bandooni and V. S. Negi
- 11. Environmental Hazards: S. N. Prasad

EVS 3053: Disaster Risk Reduction & Management (Elective -II)

45 classes 3 credits Total marks:		: 50
Unit	Content	Lect
Unit-I:	Concepts, and definitions (Disaster, Haza	urd, 7
Understanding Disasters	Vulnerability, Resilience, Risks); Disaste	ers:
	Classification, Causes & Impacts; Differential impact	cts-
	in terms of caste, class, gender, age, location, disability	ity.
	Global trends in disasters: urban disasters, pandemi	ics,

	complex emergencies; Climate change and occurrence of disasters	
Unit II: Methods & Approaches to Disaster Risk reduction:	Disaster cycle - its analysis, Phases; Community based Disaster Risk Reduction (DRR); Structural/non- structural measures, roles and responsibilities of- community, Panchayati Raj Institutions/Urban Local Bodies (PRIs/ULBs), states, Centre, and other stake- holders.	6
Unit –III: Application of Science & Technology in Disaster Management	Geo-informatics in Disaster Management (RS, GIS, GPS); Disaster Communication System (Early Warning and Its Dissemination); Disaster Safe Designs and Constructions; Role of science& technology Institutions for Disaster Management in India	6
Unit –IV : Environment and Disaster	Environment, ecosystem and disasters; Industrial hazards and safety measures; Post disaster impact on environment; Impact of developmental projects on disaster risk; Aspects of environmental management for disaster risk reduction; Environmental Impact Assessment (EIA).	6
Unit V: Emerging approaches in Disaster Management	Three stages: Pre-disaster Stage (preparedness), Emergency Stage, Post Disaster stage - Rehabilitation	6
Unit VI: Inter-relationship between Disasters and Development	Factors affecting Vulnerabilities, differential impacts, impact of Development projects such as dams, embankments, changes in Land-use etc.; Relevance of indigenous knowledge, appropriate technology and local resources.	7
Unit VII: Disaster Risk Management in India	Hazard and Vulnerability profile of India; Institutional arrangements (Mitigation, Response and preparedness, DM Act and Policy, Other related policies, plans, programmes and legislation) NAMA guidelines for Disaster Management.	7

- 1. Disaster mitigation-experiences and reflections: P. Sahni, A. Dhameja and U. Medury
- 2. Environmental changes and natural disaster: R. K. Yadav and R. Singh
- 3. Extreme events-a physical recronstruction and risk assessment: J. Nott
- 4. Disaster management strategies: V. Deolankar
- 5. Disaster management and economic development: G. P. Kapoor
- 6. Handbook of environmental disaster and management: T. S. Nath
- 7. Disaster management: V. K. Sharma
- 8. Management of man-made disaster: S. L. Goel

EVS 3063: Industrial Pollution Control and Waste Management (Elective-I) 45 classes 3 credits Total marks: 50

Unit	Content	Lect
Unit I:	Types and characteristics of industrial wastes; Principles of	6
Introduction	industrial waste treatment; Pollution of biosphere;	
	hydrosphere, atmosphere & geosphere due to industrial	
	wastes and emissions	
Unit II:	Treatment of wastes containing organic and inorganic	7
Treatment and Disposal of	impurities; Classification of effluent treatment methods –	
Industrial Wastes	mechanical, physico-chemical, biological, thermal	
	methods; Specific treatment methods- equalization and	
	studies Coal mining and Acid Mine Drainage	
	(AMD) Paper & pulp industries	
Unit III.	Industrial wastewater treatment processes: selection	7
Industrial Wastewater	procedure for physical, chemical and biological methods of	, í
Treatment Technologies	industrial wastewater treatment: Concept of CETPs:	
	Concept of zero discharge-Case studies- Oil Refinery,	
	Paper & Pulp industry	
Unit IV:	Gravity settling chambers, Cyclone Separator, Wet	7
Air Pollution Control	Scrubbers, Fabric filters, Electrostatic precipitators: design	
Technologies	and operation; Control devices for gaseous pollutants; Case	
	study- Cement Industry, Coal mining industry	
	Vehicular Pollution Control; Combustion Cycle, Fuel/air	
	ratio and Catalytic convertor; selective catalytic and	
	selective non-catalytic reduction	
¥ I \$4 \ X7.	Indoor air pollution and its control	
Unit V: Noise Dellution Control	Control of noise at source and protection of exposed	0
Technologies	poise control -acoustic quieting	
reemologies	noise control -acoustic quicting	
Unit VI:	Cement Industry, Paper and Pulp Industry, Oil	6
Industrial Pollution: Case	Explorations and Refineries, Tea Industry, Uranium	
Studies from NE India	Mining, Coal Mining, Limestone mining, Stone quarrying.	
Unit VII:	Concept of 3Rs- Reduce, Recycle, Reuse; Waste	6
Waste Management and	minimization by reuse and recovery. Waste minimization	
Reclamation	by recovery and external sale of products, case studies-	
	Landmark episodes, Preventive and Control measures.	

Recommended Books

- 1. Industrial pollution and management: A. Kumar
- 2. Physico-chemical examination of water, sewage and industrial effluents: N. Manivasakam
- 3. Environmental Chemistry: B. K. Sharma

- 4. Environmental Chemistry: S. E. Manahan
- 5. Pollution management in industries: R. K. Trivedi
- 6. Environmental management in petroleum industry: Wahi, Agnihotri and Sharma
- 7. Heavy metals and environment: M. Athar and S. B. Vohora
- 8. Environmental engineering: G. N. Pandey and G. C. Carney

EVS 3073: Municipal Water Supply and Wastewater Treatment (Elective -II) 45 classes 3 credits Total marks: 50

Unit	Content	Lect
Unit I:	Water supply scheme: Importance & necessity of water	5
Introduction	supply scheme; Types of water demands; Self-	
	purification of waste in streams; zones of purification;	
	eutrophication; disposal standards and philosophy of	
	Minimal National Standards (MINAS); Status of water	
	supply and sanitation sector	
Unit II:	Components of water supply schemes; water treatment	5
Municipal water supply and	flow-sheet; estimation of sewage quantity and	
sanitation	characteristics; discharge variation; sewage treatment	
	plant flow-sheet; components of water distribution and	
	sewerage systems	
Unit III:	Aeration and types of aerators; purpose and mechanism	8
Water treatment Systems	of flocculation; coagulation, sedimentation, filtration;	
	Chemical and non-chemical methods of disinfection;	
	Chick's law; tertiary treatment methods	
Unit IV: Wastewater	Wastewater characteristics; Physical characteristics;	7
rundamentals	inorganic constituents; organic constituents; non-	
	metallic constituents; metallic constituents; Biological	
I I	Characteristics; wastewater sources.	0
UIII V: Municipal Wastewater	separators: primary and secondary settling tanks	0
(Sewage) treatment	Biological treatment: Biology of sewage treatment:	
(Sewage) treatment	types of biological treatment processes: process	
	description and design principals: removal of nitrogen	
	and phosphorus	
	Sludge stabilization and dewatering systems: Low cost	
	sewage treatment technologies- septic tanks: reed bed:	
	oxidation ponds and lagoons	
Unit VI: Waste water	Characteristics of ideal disinfectant; Disinfection	7
disinfection processes	method; Mechanism of disinfectants; Factors	
_	influencing action of disinfectants; Disinfection with-	
	Chlorine dioxide, ozone and UV-radiation; De-	
	chlorination.	
Unit VII:Waste water	Terms used in water use application; Water reclamation	5
reclamation and reuse	criteria; Issues in water reuse; Public health and	
	environmental issues; Water reclamation technologies	

- 1. Wastewater Engineering-Treatment and Reuse: Metcalf and Eddy
- 2. Water and Wastewater: K. Gopal
- 3. Urban Storm water management: Novopny
- 4. Wastewater microbiology: D. H. Bergey
- 5. Wastewater treatment: M. N. Rao and A. K. Dutta
- 6. Chemistry of the Environment: Beiley, Clark, Ferris, Strong and Krause
- 7. Urban water management: M. S. Rathore and V. R. Reddy
- 8. Sewage disposal and air pollution engineering: S. K. Garg

EVS 3082: Practical V (Environmental Biotechnology & Microbiology) (Any 6) (2 Credits)

- 1. Microscopy: Light microscopy principles, parts and functions (demonstration)
- 2. Preparation of microbial media
- 3. Basic Sterilization techniques
- 4. Experiments related to aero-microbiology
- 5. Preparation of Agar media
- 6. Sampling of microbes in water, air and soil: Microscopic examination of pure and mixed microbial cultures and serial dilution and spread plating of mixed microbial cultures
- 7. Streak plating, microscopy and gram staining techniques
- 8. Microscopic measurements: micrometer, haemocytometer
- 9. Handling of liquid cultures and monitoring microbial growth phases via spectrophotometry
- 10. Microscopic study of phytoplanktons and zooplanktons
- 11. Tissue culture: preparatory steps for tissue culture, callus culture and cell suspension
- 12. Determination of portability of water using MPN methods; presumptive and confirmatory tests for coliforms

EVS-3092- Practical VI (Eco-hydrology & Watershed Management) (2 Credits)

- 1. Drainage Basin Morphometry.
- 2. Estimation of annual average precipitation/volume of precipitation by using isohyetal method
- 3. Estimation of annual average precipitation/volume of precipitation by using *Thiessen method*
- 4. Water balance study
- 5. Measurement and analysis of meteorological data
- 6. Estimation of design discharge (10yrs, 50yrs and 100yrs) of a river by using *Log Pearson Type III method*
- 7. Determination of Return period for flood frequency analysis using *Gumbel's distribution method*
- 8. Measurement and estimation of flow using area-velocity method
- 9. Estimation of evaporation and evapo-transpiration
- 10. Hyetograph and hydrograph analysis
- 11. Construction of unit hydrograph
- 12. Flow separation from discharge hydrograph of given sample data

FOURTH SEMESTER

(15 weeks, 90 working days) Average contact hours per week = 28 hours

EVS 4013: Environmental Impact Assessment

45 classes	3 credits	Total marks: 50	
Unit	Contents	L	lect.
Unit-I: Introduction	Concept of environment and environmental Im development and environment, origin and d Measurement of impact – physical, social - Concept of significant effect; Short term vers relationship of EIA to sustainable development; E and 2006, Environmental Clearance (EC), Au granting EC at State and Central Government Leve	pact, Nexus between evelopment of EIA, economical, natural; sus long term effect; EIA Notification 1994 athorities involved in els.	7
Unit II: Framework of EIA	Description of environmental setting; Environmental area consideration, Prediction and assessment of noise and biological environment; Prediction and on the cultural and socio-economic environment analysis; Public participation in environment Integration and Optimization criteria for Multip Projects	tal impact factors and impact on air, water, assessment of impact t; Methods of impact al decision making, purpose Development	7
Unit-III: Impact Assessment	Evaluation of proposed actions and detern importance, EIA methodologies; Comparison	nination of impact ' of alternatives and	7
Methodologies	decision making; Compensatory actions - green b writing of EIA/EIS; Review of procedures, practic EIA in India; Examples of total impact evaluation. Role of GIS in EIA - Base line study; risk assessm mitigation measures, comparison of alternatives.	belts; Preparation and ces and guidelines for ent, risk management,	
Unit-IV: Air and Water quality impact analysis	Typical considerations and factors; Pollution interactions; Air pollution effects; Air quality aspects; Assessment methodology; Mitigation pro – Highway and Power Plants. Water quality criteria and standards, Environm quality impact by project type; Water quality Mod	sources, atmosphere y Modelling; Legal cedures; Case studies ental setting; Water lelling	6
Unit-V: Noise and Energy Impact Analysis	Nature of sound, Environmental noise problem, so intensity; Decibels and levels, sound propagat Effect of noise on people; Noise scale and rating transportation noise impact, examples of impact as Importance of energy impact analysis; Energy demand scenario; Energy conservation; Energy alt	und power and sound ion and attenuation; methods, estimating ssessment. y inventory, supply ternatives.	6
Unit-VI: Vegetation and Wild Life Impact Analysis	Biological concepts and terms; Assessment topics, alternatives, assessment methodologies; Example	mitigation measures, of biotic assessment	6
Unit-VII:	Types of socioeconomic impact, basic steps in SL	A, Analysis of public	6

Socioeconomic	services and facilities impacts; Fiscal impact analysis; Analysis of	
Impact Analysis	social impacts; Impacts of economic profile of the community.	

45 classes

- 1. Environmental Impact Analysis Handbook: J. G. Rau and D. C. Wooten; McGraw-Hill Book Co.
- 2. Environmental Impact Assessment, L. W. Canter, Mc Graw Hill Publication,
- 3. Methods of Environmental Impact Assessment: P. Morris & R. Therivel; UCL Press
- 4. Environmental Impact Assessment (2003): A. K. Srivastav; A P H Publishing Corporation

3 credits

- 5. Introduction to Environmental Impact Assessment: Glasson; Research Press
- 6. Environmental Impact Assessment, Prof P.R Trevedi
- 7. Environmental Impact Assessment, Berthwal

EVS 4023: Environmental Law and Management

Unit	Contents	Lect.
Unit-I:	Legal, administrative and constitutional provisions for	7
Environmental laws	in environmental protection in India; Statutory protection of	
India	the Human Environment - Factories Act, Motor Vehicle	
	Act, Hazardous Waste legislation for pollution abatement;	
	Acts related to Pollution - The Water Act- 1974; The Air	
	Act -1981; The Environment Protection Act, 1986; Wildlife	
	Protection Act, 1972, The Forest Conservation Act, 1980,	
	Coastal Regulation Act, National Green Tribunal.	
Unit-II:	Evolution and development of International	7
International	Environmental laws with reference to Stockholm	
Environmental Laws	Conference, Nairobi Declaration, Rio Conference, Rio+5	
	and the Rio+10, etc.	
	Global environmental issues and International laws: to	
	control Global warming, Ozone depletion, Acid rains,	
	hazardous waste; Role of UN authorities in protection of	
	Global Environment, Montreal Protocol ,Vienna	
	Convention, Ramsar Convention	
Unit-III:	Concept and scope, Environment management Systems	6
Environmental	(EMS) and approaches, Standards - international and	
Management	national; Ecomark; Green funding and taxes, Trade and	
	environmental management; Corporate Social	
	Responsibility (CSR)	
Unit-IV:	Definition of Environmental audit, Objectives,	6
Environmental Audit	Advantages, Audit Methodologies, Five Steps Audit	
	Approach, Environmental Audit Scenario in India,	
	International scenario of EA	
Unit-V:	The ISO 14000 and ISO 14001 standards, Management	7
Environmental standards	product design for the environment (ISO 14062); Eco-	
	labelling, ecological and carbon footprints (ISO 14064-	

	65)–Case study	
Unit VI:	Urban Environment, Urban Sprawl, Pollution and waste	6
Urban Environmental	management associated with urban growth, Sustainable	
Management	Urban Development: water supply, waste disposal, urban	
	agriculture, transport, energy, Urban-rural linkages	
Unit-VII:	Different types of solid wastes, Methods of disposal	6
Management of Solid	and management of Municipal solid wastes; Bio-medical	
Wastes	wastes and Hazardous wastes; Recycling of wastes and	
	waste minimization techniques, Solid waste Management	
	scenario in NE India. Solid Waste management Scenario-	
	global and National	

- 1. Eccleston, C. H. (2011): Environmental Impact Assessment. Taylor & Francis
- 2. Sustainable development (Vol. I & II): N. L. Gupta and K. K. Gurjar (ed); Rawat Publications
- 3. Environmental management: G. N. Pandey; Vikash Publishing House
- 4. Environmental management: H. M. Saxena; Rawat Publications
- 5. Environmental Law and Policy in India: S. Divan & A. Rosencranz; Oxford University Press
- 6. Environmental Management Physio-ecological facets (Vol. I & II): Rai, Mohapatra&Goel (ed); Rawat Publications
- 7. Environmental Management in India Vol. I & II): R. K. Sapru; Ashish Publishing House
- 8. Urbanization and its Environmental Impact: B S Irya and S A. Abassi
- 9. Environmental Legislations in India: K R. Gupta

EVS 4033: Climate Change and Global Environment (*Open/In-house*) 90 classes 6 credits Total marks: 100

Unit	Contents	Lect.
Unit-I:	Weather and climate change, Geological time scale,	12
Climate and Weather	ice ages, human influences on climate change.	
	Internal forcing mechanisms and external forcing	
	mechanisms, The Milankovitch Cycle theory, Solar	
	Variation	
Unit-II:	Radiative forcing and GHGs-Definition, concept and	15
Greenhouse gases and Global	processes; Forcing -response relationship, Radiative	
warming	forcing by tropospheric ozone, Radiative forcing of	
	tropospheric Aerosols; Enhanced greenhouse gas	
	effect; Global warming; Effects and causes of global	
	warming	
Unit-III:	Major events: Oceanic Anoxic Events, Holocene	14
Physical evidences of climate	climatic optimum, Paleocene–Eocene Thermal	
change	Maximum,	
	Tree ring analysis, Polar ice, Isotopes, Ice melting and	
	Ice core analysis, glaciers and arctic sea loss	
	Sea level changes and Shore line changes and	
	temperature changes	

Unit-IV: Human ecology of climate change	Anthropogenic activities responsible for climate change: Source activities: Burning of fossil fuel, Industrial activity, Urbanization, Agriculture, transportation, waste generation, Removals of Sinks; Rapid changes in Land use and Land cover;	14
Unit –V•	Climate change and food security Vulnerabilities of different ecological and social	10
Climate Change Vulnerabilities	systems; issues for developing countries; tipping points in the Earth System	10
Unit –VI: Climate Change Adaptation	Indicators of adaptation; Connections between adaptation and mitigation: trade-offs and mal- adaptation. Consequences of adaptation strategies. Case studies from NE India.	13
Unit-VII: International & National response to climate change	IPCC -UNEP,WMO, IPCC bureau, Task Groups, UNFCC-The convention, Sites and Platforms, Kyoto Protocol, Paris agreement, 2020 ambition, Talanoa, Documents and decisions; National and local government responses: NAPCC, SCAAP	12

- 1. Global Warming and Climate Changes (Vol I, II, III): GBhargav
- 2. Climate change and Environmental Science: S.C Bhatia
- 3. Climatology: A Awasthi
- 4. Physical climatology Critchfield
- 5. Climate Change: An Asian Perspective: S Singh and M. Kumar
- 6. Global warming and Climate Change: S K Agarwal
- 7. Weather and Climate Modelling: SV Singh, S Basu and T N. Krishnamurti
- 8. Climate change and Environment: J Sundaresan et al
- 9. Climate Change and International Policies: N Gaan

45 classes	3 credits	Total marks: 50	
Unit	Contents		Lect.
Unit I	History of Earthquakes; Causes of I	Earthquakes: Types	7
Introduction to Seismology & Earthquake Hazards	of Plate Boundaries; Elastic	Rebound theory;	
	Continental Drift and Plate	Tectonics; Major	
	Subduction zones in the world; Maj	or Spreading zones	
	in the world Major Thrust Faults in	n the world; Major	
	Strike Slip Faults in the world;	Uncertain/Diffuse	
	Boundaries in the World		
	Types of Earthquake/Seismic Haza	ards; List of Major	
	Historic Earthquakes in the W	/orld; Large and	
	Damaging Earthquakes of India		
Unit II:	Overview of Plate Tectonics; Types	s of faults; Activity	7
		-	

EVS 4043: Seismology and Seismic hazards in NE India (Elective-III)

Earthquake sources, magnitude	and fault Studies; Earthquake source mechanisms;	
and waves	Source models.	
	Concept of Seismic magnitude and Intensity,	
	earthquake size, different magnitude scales and	
	relations.	
	Theory of wave propagation; Seismic waves, body and	
	surface waves	
Unit III:	Earthquake recording instrumentations; concept of	6
	seismograph, Seismic station; Interpretation of Seismic	
Earthquake Instrumentation and	Records –acceleration, velocity and displacement;	
Recording	Frequency and Time Domain parameters; Response	
	Spectra and Spectral parameters; Epicenter and	
	magnitude determination;	
Unit IV:	Introduction to Seismic zones and codes, Global and	6
	National seismic hazard assessment mapping	
Seismic Zonation	programs:	
	Safety of Individual Site: Concept of Seismic Micro-	
	zonation: Need for Micro-zonation. Types and Scale.	
	Methodology	
Unit V:	Introduction to seismic hazard analysis: methods:	5
Seismic Hazard Analysis	Deterministic and probabilistic: Attenuation models	U
Unit VI:	Seismic environment of NE India: Major faults and	8
Earthquake in NE India	seismo-tectonic zones: Eastern Himalayan Collison zone.	-
	Indo-Myanmar Subduction zone: Syntaxis zone, Shillong	
	Plateau, Mikir Hills and Assam Valley Zone, Tripura-	
	Mizoram Fold Belt: Status of seismicity in NE India –	
	major earthquake- Shillong Earthquake 1897. Assam	
	Earthquake 1950: Seismic Gaps: Earthquake Disaster	
	Mitigation & Management in NE India	
Unit VII:	Geo-informatics in earthquake mitigation, RS and GIS	6
Application of Geo-informatics in	application for post-quake rehabilitation. GIS database	-
seismic hazard studies	for previous earthquakes, geospatial information	
	system for earthquake disaster management, mapping	
	tectonic lineaments.	

- 1. Natural Hazards Local, National, Global (1974): G. F. White (ed), Oxford University Press
- 2. Satellite Remote Sensing Technology for Natural Hazards Preparedness and Emergency Response
- 3. Planning (1989): G. Morgan, World Bank, Environment Operation and Strategy Division, World Bank
- 4. Elementary seismology (1969): C. F. Richter; Eurasia Publishing House Pvt. Ltd.

- 5. Geodynamics of Northeastern India and the adjoining region (2001): D. R. Nandy; acb Publications,Kolkata
- 6. Introduction to Seismology (1999): P. M. Shearer; Cambridge University Press
- 7. Principles of Seismology (1999): A. Udias; Cambridge University Press
- 8. Fundamentals of Geophysics: William Lowrie
- 9. Environmental Geoscience Interaction Between Natural Systems and Man (1973): A. N. Strahler and A.H. Strahler; Santa Barbara, California: Hamilton Publishing
- 10. Environmental Geology (1987): K. S. Valdiya; Tata McGraw-Hill
- 11. Keith Smith and Petley David, 2008. Environmental Hazards: Assessing Risk and Reducing Disaster, Routledge
- 12. Showalter, Pamela S. and Lu, Yongmei, 2010. Geospatial Techniques in Urban Hazards and Disaster Analysis. Springer.
- 13. NDMA, 2004. Disaster Management in India, A Status Report, National Disaster Management Division, Ministry of Home Affairs, India
- 14. NRSC, 2009. Manual for National Geomorphological and Lineament Mapping on 1:50,000 scale.
- 15. Burbank D.W., and Anderson, R.S. 2001. Tectonic Geomorphology

EVS 4053: Flood Hydrology and Flood Hazards of NE India (Elective - IV) 45 classes 3 credits Total marks: 50

Unit	Contents	Lect.
Unit I	River Equilibrium: Stability Of Channel –Regime	6
River Mechanics	Relations –River Bend Equilibrium –Hydraulic Geometry of Downstream -Bars and Meandering - River Dynamics –Degradation and Aggradations of River Bed –Confluences And Branches	
Unit II Hydrologic System and Statistical Analysis	Hydrologic Cycle –System Concept –Hydrologic System Model –Classification of Hydrologic Models – Statistical, Stochastic And Deterministic Approaches – Statistical Characteristics of Hydrological Data –	7
Unit III Flood Estimation	Hydrologic Extremes –Flood–Types Of Flood –Effects Of Flood –Design Flood -SPF/MPF -Estimation Of Design Flood –Physical Indicators -Envelope Curves - Empirical Methods –Rational Method -Statistical Methods –Frequency Analysis –Unit Hydrograph Method	7
Unit IV River Training & Regulation	River Training Works and River Regulation Works – Objectives, Classification, Methods; Flood Plain Management –Waves and Tides in Estuaries -Interlinking of Rivers –River Stabilization	6
Unit V	Flood Control Methods – Classification, Structural and Non-Structural Measures; Design Flood and its	6

Flood Control Methods Unit VI Flood Forecasting& Warning	estimation; Flood Control reservoirs; Flood Plain Management ; Flood Plain Zoning; Benefits of flood control; National Policy on Floods Fundamental considerations in flood forecasting and warning systems – definitions, meteorological considerations, hydrological considerations, dissemination of forecast and warnings, institutional aspects; Data Requirements; Overview of methods and models; Monitoring Network; Real time data transmission and management; Role of GIS in forecasting and warning systems	7
Unit VII Flood Modelling	Remote Sensing and GIS for Flood Modelling and Management; Flood Models, Flood Modelling: Flood Peak Estimation and Flood Routing Overview of Flood Models, Hydrologic Analysis: Flood Risk Analysis: Flood Frequency Analysis, Depth Duration And Risk Analysis	6

- 1. Floods A geographical perspective (1978): Roy Ward; The Macmillan Press Ltd
- 2. Natural Hazards Local, National, Global (1974): G. F. White (ed), Oxford University Press
- 3. Handbook of Applied Hydrology (1964): V.T. Chow, (New York: McGraw-Hill,
- 4. Satellite Remote Sensing Technology for Natural Hazards Preparedness and Emergency Response
- 5. Planning (1989): G. Morgan, World Bank, Environment Operation and Strategy Division, World Bank
- 6. Elementary hydrology (1994): V. P. Singh, Prentice-Hall of India
- 7. Hydrology Principles, analysis and design (1996): H. M. Raghunath, New Age International Publisher
- 8. Elements of water resource engineering (1996): K. N. Duggal and J. P. Soni, New Age Intel. Pub.
- 9. Natural Hazards Local, National, Global: G. F. White (ed), Oxford University Press
- 10. Handbook of Applied Hydrology (1964): V.T. Chow, (New York: McGraw-Hill,
- 11. Environmental Geoscience Interaction Between Natural Systems and Man (1973): A. N. Strahler and A.H. Strahler; Santa Barbara, California: Hamilton Publishing
- 12. Environmental Geology (1987): K. S. Valdiya; Tata McGraw-Hill
- 13. Manual on Flood Forecasting and Warning- World Meteorological Organisation, WMO-1072; 2011 edition (web material)

EVS 4063: Solid and Hazardous Waste Management (Elective-III)

45 classes	3 credits Total marks: 50	
Units	Contents	Lect
Unit-I:	Waste Stream Assessment (WSA), Waste characterization:	7
Solid Waste	Physical and chemical, Factors affecting waste quantity and	
Management	quality, Major legislations, Monitoring responsibilities, Sampling	
	& characterization, Composition of MSW, Health and	
	Environmental effects of Solid waste pollution.	
	L	
Unit-II:	Collection of solid wastes, Types of solid wastes collection	6
Collection & Transport	systems, Alternative Techniques for collection systems, Collection	
of Solid Waste	& Transformation of solid wastes. Transport means and methods.	
	Transfer stations types & design.	
Unit III:	Source Reduction Basics, Purpose, Significance of Recycling,	6
Source Reduction.	Recycling Programme Elements : Source separation. Storage and	
Product Recovery and	collection of recyclables. Collection vehicles for recycling.	
Recycling	Processing equipments for recycling Material recovery	
	facilities (MRF's) Commonly Recycled Materials and Processes	
	: Paper and cardboard. Glass. Metals. Plastic	
Unit IV:	Sanitary landfill -planning Site selection. Design and operation.	6
Disposal of SW	Landfill Processes landfill Gas emissions. Aerobic landfill	Ũ
	stabilization Biological oxidation Composting	
	Vermicomposting Pyrolysis Incineration & Energy Recovery	
Unit-V:	Definition & identification of Hazardous Wastes Sources &	
Hazardous waste	Characteristics of hazardous wastes Hazardous waste in municipal	
Management	waste	
Wanagement	Hazardous Waste Treatment technologies Physical chemical &	
	thermal methods of stabilizations Solidification Chemical	
	Fixation & encapsulation Incineration of Hazardous waste	
	landfills Reclamation of Hazardous waste landfill sites :	
	randinis, Reclamation of Hazardous waste randini sites.,	
Unit-VI:	Classification, segregation and colour coding-coding for storage	6
Biomedical Waste	containers: Disinfection/ sterilization_autoclaving_microwave	Ũ
Diomedical waste	treatment and incineration: Disposal methods:	
		-
Unit VII:	Physical, Chemical and Biological reclamation; Reclamation of	1
waste Reclamation	nazardous waste landfill sites; Reclamation planning: Physical	
	reclamation: re-contouring, terracing, slope preparation,	
	segregation and burial of toxic substance, reclamation	
	alternatives, reclamation equipment, scheduling and costs.	

Recommended Books:

- 1. Handbook of Solid Waste Management: G Tchbanoglons and F. Kreith
- 2. Solid and hazardous Waste management: S C Bhatia
- 3. Environmental Science: S C Santra
- 4. Environmental Science: R T Wright
- 5. Hazardous Waste Management: S Malhotra
- 6. Environmental Science and Engineering: J G Henry and G W Heinke
- 7. Environmental Engineering: H S Peavy, D R Rowe and G Tchobanoglaons

45 classes	3 credits Total marks: 50)
Unit	Content	Lect
Unit I:	Green Chemistry – Definition – Principles & Concepts	6
Basics of Green Chemistry	of Green Chemistry; Historical Context; Limitations;	
	Public Policy	
Unit II:	Basics of organo-metallic chemistry and Catalysis;	7
Green Chemistry and Catalysis	Oxidations & Reductions; C-C bond formation; Phase	
	Transfer Catalysis; Hydroformylation; Carbonylation;	
	Metathesis; Heterogeneous Catalysis	
Unit III:	Industrial use of green solvents; Ionic liquids, Fluorous	6
Environmentally Benign	solvents, Supercritical CO ₂ , VOC's	
Solutions		
Unit IV:	Polyactide, Uses of biofuels (Ethanol, Biodiesel, Fuel	6
Sustainable Polymers	Cells); Plastics from Plant oils; Lignin based products;	
	Synthesis and properties of 2-Methyltetrahydrofuran	
Unit V:	Introduction - Fermentation and Bio-transformations -	6
Green Chemistry Using Bio	Production of Bulk and fine chemicals by microbial	
Catalytic Reactions	fermentation-Antibiotics – Vitamins – Bio-catalytic	
	synthesis of industrial chemicals- Future Tends.	
Unit VI:	Basic concepts of Nanoscience and Nanotechnology;	7
Nanotechnology in Green	Classification of Nanomaterials; Properties and	
Chemistry	Application of Nanomaterials.; Bio-inspired Green	
	Nanomaterials – Risks and safe nanotechnology	
Unit VII:	Alternative feed stocks, Agrochemicals, Plantorigin	7
Green Chemistry In Agriculture	Insecticides, Fungicides, Biocides;	
& Renewable Resources	Renewable resources Biomass; Energy from Biomass;	
	Other forms of renewable energy-Fuel Cells, Solar	
	Power; Bio refinery chemicals from fatty acids; Polymer	
	from Renewable Resources	

EVS 4073: Green Chemistry (Elective- IV)

- 1. New Trends in Green Chemistry: V K Ahuwalia and M Kidwa
- 2. Environmental Chemistry with Green Chemistry: Asim K Das
- 3. Green Chemistry: S Rastogi and L Jha
- 4. Chemistry for Green Environment: Rastogi and Jha

EVS 4083: Project

100 marks /6 credits

Each student has to submit a dissertation based on his/her research project selected in the third semester through paper EVS 3102. The research shall be carried out under the guidance of faculty members as decided by the DAC. The dissertation shall be evaluated by both internal and external examiners as per university rules and this shall carry 75 marks. The students shall appear for a Viva-voce examination before a panel constituted as per university rules and this shall carry 25 marks. Thus the project work shall carry in total 100 marks equivalent to 6 credits.